Skip to main content
Log in

High pressure NMR study of a small protein, gurmarin

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

The effect of pressure on the structure of gurmarin, a globular, 35-residue protein from Gymnema sylvestre, was studied in aqueous environment (95% 1H2O/5% 2H2O, pH 2.0) with an on-line variable pressure NMR system operating at 750 MHz. Two-dimensional TOCSY and NOESY spectra were measured as functions of pressure between 1 and 2000 bar at 40 °C . Practically all the proton signals of gurmarin underwent some shifts with pressure, showing that the entire protein structure responds to, and is altered by, pressure. Most amide protons showed different degrees of low field shifts with pressure, namely 0–0.2 ppm with an average of 0.051 ppm at 2000 bar, showing that they are involved in hydrogen bonding and that these hydrogen bonds are shortened by pressure by different degrees. The tendency was also confirmed that the chemical shifts of the amide protons exposed to the solvent (water) are more sensitive to pressure than those internally hydrogen bonded with carbonyls. The pressure-induced shifts of the Hα signals of the residues in the β-sheet showed a negative correlation with the ‘folding’ shifts (difference between the shift at 1 bar and that of a random coil), suggesting that the main-chain torsion angles of the β-sheet are slightly altered by pressure. Significant pressure-induced shifts were also observed for the side-chain protons (but no larger than 10% of the ‘folding’ shifts), demonstrating that the tertiary structure of gurmarin is also affected by pressure. Finally, the linearity of the pressure-induced shifts suggests that the compressibility of gurmarin is invariant in the pressure range between 1 and 2000 bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  • Akasaka, K., Tezuka, T. and Yamada, H. (1997) J. Mol. Biol., 271, 671-678.

    Google Scholar 

  • Arai, K., Ishima, R., Morikawa, S., Miyasaka, A., Imoto, T., Yoshimura, S., Aimoto, S. and Akasaka, K. (1995) J. Biomol. NMR, 5, 297-305.

    Google Scholar 

  • Bax, A. and Davis, D.G. (1985) J. Magn. Reson., 65, 355-360.

    Google Scholar 

  • Braunschweiler, L. and Ernst, R.R. (1983) J. Magn. Reson., 53, 521-528.

    Google Scholar 

  • Chalikian, T.V., Gindikin, V.S. and Breslauer, K.J. (1995) J. Mol. Biol., 250, 291-306.

    Google Scholar 

  • Gekko, K. and Noguchi, H. (1979) J. Phys. Chem., 83, 2706-2714.

    Google Scholar 

  • Goossens, K., Smeller, L., Frank, J. and Heremans, K. (1996) Eur. J. Biochem., 236, 254-262.

    Google Scholar 

  • Hara, S., Makino, J. and Ikenaka, T. (1989) J. Biochem., 105, 88-92.

    Google Scholar 

  • Hitchens, T.K. and Bryant, R.G. (1998) Biochemistry, 37, 5878-5887.

    Google Scholar 

  • Imoto, T., Miyasaka, A., Ishima, R. and Akasaka, K. (1991) Comp. Biochem. Physiol., 100A, 309-314.

    Google Scholar 

  • Isaacs, N.S. (1981) Liquid Phase High Pressure Chemistry, Chap. 3, John Wiley & Sons, New York, NY.

    Google Scholar 

  • Jeener, T., Meier, B.H., Bachmann, P. and Ernst, R.R. (1979) J. Chem. Phys., 71, 4546-4553.

    Google Scholar 

  • Jonas, J. and Jonas, A. (1994) Annu. Rev. Biophys. Biomol. Struct., 23, 287-318.

    Google Scholar 

  • Kitchen, D.B., Reed, L.H. and Levy, R.M. (1992) Biochemistry, 31, 10083-10093.

    Google Scholar 

  • Li, H., Yamada, H. and Akasaka, K. (1998) Biochemistry, 5, 1167-1173.

    Google Scholar 

  • Mabry, S.A., Lee, B.S., Zheng, T. and Jonas, J. (1996) J. Am. Chem. Soc., 118, 8887-8890.

    Google Scholar 

  • Macura, C., Huang, Y., Suter, D. and Ernst, R.R. (1981) J. Magn. Reson., 43, 259-281.

    Google Scholar 

  • Marion, D. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun., 113, 967-974.

    Google Scholar 

  • Markley, J.L., Northrop, D.B. and Royer, C.A. (Ed.) (1996) High-Pressure Effects in Molecular Biophysics and Enzymology, Oxford University Press, Oxford.

    Google Scholar 

  • Morishima, I. (1987) In Current Perspectives of High Pressure Biology, Academic Press, pp. 315-333.

  • Nishiuchi, Y., Kumagaye, K., Noda, Y., Watanabe, T. and Sakakibara, S. (1986) Biopolymers, 25, S61-68.

    Google Scholar 

  • Ösapay, K. and Case, D.A. (1994) J. Biomol. NMR, 4, 215-230.

    Google Scholar 

  • Paci, E. and Marchi, M. (1996) Proc. Natl. Acad. Sci. USA, 93, 11609-11614.

    Google Scholar 

  • Panick, G., Malessa, R., Winter, R., Rapp, G., Frye, K.J. and Royer, C.A. (1998) J. Mol. Biol., 275, 389-402.

    Google Scholar 

  • Pardi, A., Wagner, G. and Wüthrich, K. (1983) Eur. J. Biochem., 137, 445-454.

    Google Scholar 

  • Perkins, S.J. (1982) In Biological Magnetic Resonance, Vol. 4, Berliner, J.J. and Reuben, J. (Eds), Plenum Press, New York, NY, pp. 79-144.

    Google Scholar 

  • Piotto, M., Saudek, V. and Sklenar, V. (1992) J. Biomol. NMR, 2, 661-665.

    Google Scholar 

  • Redfield, A.G. and Kunz, S.D. (1975) J. Magn. Reson., 32, 13089-13097.

    Google Scholar 

  • Sklenar, V., Piotto, M., Leppik, R. and Saudek, V. (1993) J. Magn. Reson., A102, 241-245.

    Google Scholar 

  • Szilagyi, L. and Jardetzky, O. (1989) J. Magn. Reson., 83, 441-449.

    Google Scholar 

  • Takeda, N., Kato, M. and Taniguchi, Y. (1995) Biochemistry, 34, 5980-5987.

    Google Scholar 

  • Urbauer, J.L., Erhardt, M.R., Bieber, R.J., Flynn, P.F. and Wand, A.J. (1996) J. Am. Chem. Soc., 118, 11329-11330.

    Google Scholar 

  • Wagner, G. (1980) FEBS Lett., 112, 280-284.

    Google Scholar 

  • Williamson, M.P. and Asakura, T. (1993) J. Magn. Reson., B101, 63-71.

    Google Scholar 

  • Wishart, D.S., Sykes, B.D. and Richards, F.M. (1991) J. Mol. Biol., 222, 311-333.

    Google Scholar 

  • Wüthrich, K. (1986) NMR of Proteins and Nuleic Acids, JohnWiley & Sons, Inc., New York, NY.

    Google Scholar 

  • Yamada, H. (1974) Rev. Sci. Instrum., 45, 640-642.

    Google Scholar 

  • Yamada, H., Nishikawa, K., Sugiura, M. and Akasaka, K. (1997) International Conference on High-Pressure Science and Technology, abstracts, p. 413, The Japan Society of High Pressure Science and Technology, Kyoto, Japan.

    Google Scholar 

  • Yamaguchi, T., Yamada, H. and Akasaka, K. (1995) J. Mol. Biol., 250, 689-694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Inoue, K., Yamada, H., Imoto, T. et al. High pressure NMR study of a small protein, gurmarin. J Biomol NMR 12, 535–541 (1998). https://doi.org/10.1023/A:1008374109437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008374109437

Navigation