Skip to main content
Log in

Human replication protein A: Global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker†

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Human Replication Protein A (hsRPA) is required for multiple cellular processes in DNA metabolism including DNA repair, replication and recombination. It binds single-stranded DNA with high affinity and interacts specifically with multiple proteins. hsRPA forms a heterotrimeric complex composed of 70-, 32- and 14-kDa subunits (henceforth RPA70, RPA32, and RPA14). The N-terminal 168 residues of RPA70 form a structurally distinct domain that stimulates DNA polymerase α activity, interacts with several transcriptional activators including tumor suppressor p53, and during the cell cycle it signals escape from the DNA damage induced G2/M checkpoint. We have solved the global fold of the fragment corresponding to this domain (RPA70Δ169) and we find residues 8–108 of the N-terminal domain are structured. The remaining C-terminal residues are unstructured and may form a flexible linker to the DNA-binding domain of RPA70. The globular region forms a five-stranded anti-parallel β-barrel. The ends of the barrel are capped by short helices. Two loops on one side of the barrel form a large basic cleft which is a likely site for binding the acidic motifs of transcriptional activators. Many lethal or conditional lethal yeast point mutants map to this cleft, whereas no mutations with severe phenotype have been found in the linker region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barbato, G., Ikura, M., Torchia, D. and Bax, A. (1992) Biochemistry,31, 5269–5278.

    Google Scholar 

  • Braun, K.A., Lao, Y., He, Z., Ingles, J. and Wold, M.S. (1997)Biochemistry, 36, 8443–8454.

    Google Scholar 

  • Brill, S.J. and Stillman, B. (1991) Genes Dev., 5, 1589–1600.

    Google Scholar 

  • Brunger, A.T. (1992) X-PLOR: A System for X-ray Crystallographyand NMR, Yale University Press, New Haven, CT.

    Google Scholar 

  • Erdile, L.F., Heyer, W.-D., Kolodner, R. and Kelly, T.J. (1991) J. Biol. Chem., 266, 12090–12098.

    Google Scholar 

  • Fairman, M.P. and Stillman, B. (1988) EMBO J., 7, 1211–1218.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M. and Kay, C.M. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Firmenich, A.A., Elias-Arnanz, M. and Berg, P. (1995) Mol. Cell. Biol., 15, 1620–1631.

    Google Scholar 

  • Georgaki, A., Strack, B., Podust, V. and Huebscher, U. (1992) FEBSLett., 308, 240–244.

    Google Scholar 

  • Gomes, X.V. and Wold, M.S. (1995) J. Biol. Chem., 270, 4534–4543.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992a) J. Am. Chem. Soc., 114, 6291–6293.

    Google Scholar 

  • Grzesiek, S. and Bax, A. (1992b) J. Magn. Reson., 96, 432–440.

    Google Scholar 

  • Kanaar, R. and Hoeijmakers, J.H.J. (1998) Nature, 391, 335–337.

    Google Scholar 

  • Kay, L.E. and Bax, A. (1990) J. Magn. Reson., 86, 110–126.

    Google Scholar 

  • Kay L.E., Ikura, M., Tschudin, R. and Bax, A. (1990) J. Magn. Reson., 89, 496–514.

    Google Scholar 

  • Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114,10663–10665.

    Google Scholar 

  • Kay, L.E. (1993) J. Am. Chem. Soc., 115, 2055–2057.

    Google Scholar 

  • Kraulis, P.J. (1991) J. Appl. Crystallogr. 24, 946–950.

    Google Scholar 

  • Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D. and Haber, J.E. (1998) Cell, 94, 399–409.

    Google Scholar 

  • Lin, Y., Chen, C., Keshav, K.F., Winchester, E. and Dutta, A. (1996)J. Biol. Chem., 271, 17190–17198.

    Google Scholar 

  • Longhese, M.P., Plevani, P. and Lucchini, G. (1994) Mol. Cell. Biol.,14, 7884–7890.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989a) J. Magn. Reson., 85, 393–399.

    Google Scholar 

  • Marion, D., Ikura, M. and Bax, A. (1989b) J. Magn. Reson., 84,425–430.

    Google Scholar 

  • Marion, D., Kay, L.E., Sparks, S.W., Torchia, D.A. and Bax, A. (1989c) J. Am. Chem. Soc., 111, 1515–1517.

    Google Scholar 

  • McCoy, M.A. and Mueller, L. (1992a) J. Am. Chem. Soc., 114,2108–2111.

    Google Scholar 

  • McCoy, M.A. and Mueller, L. (1992b) J. Magn. Reson., 98, 674–679.

    Google Scholar 

  • Muchmore, D.C., Mc Intosh, L.P., Russell, C.B., Anderson, D.E. and Dahlquist, F.W. (1989) Methods Enzymol., 177, 44–73.

    Google Scholar 

  • Mueller, L. (1979) J. Am Chem. Soc., 101, 4481–4484.

    Google Scholar 

  • Muhandiram, D.R. and Kay, L.E. (1994) J. Magn. Reson., B103,203–216.

    Google Scholar 

  • Nicholls, A., Sharp, K.A. and Honig, B. (1991) Proteins Struct. Funct. Genet., 11, 281–296.

    Google Scholar 

  • Pascal, S.M., Muhandiram, D.R., Yamazari, T., Forman-Kay, J.D. and Kay, L.E. (1994) J. Magn. Reson., B103, 197–201.

    Google Scholar 

  • Richardson, J.S. (1981) Adv. Protein Chem., 34, 167–339.

    Google Scholar 

  • Shaka, A.J., Keeler, J. and Freeman, R. (1983) J. Magn. Reson., 53,313–340.

    Google Scholar 

  • Shaka, A.J., Barker, P. and Freeman, R. (1985) J. Magn. Reson., 64,547–552.

    Google Scholar 

  • Umbricht, C.B., Erdile, L.F., Jabs, E.W. and Kelly, T.J. (1993) J. Biomol. Chem., 268, 6131–6138.

    Google Scholar 

  • Umezu, K., Sugawara, N., Chen, C., Haber, J.E. and Kolodner, R.D. (1998) Genetics, 148, 989–1005.

    Google Scholar 

  • Weisshart, K., Taneja, P. and Fanning, E. (1998) J. Virology, 72,9771–9781.

    Google Scholar 

  • Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L. and Sykes, B.D. (1995) J. Biomol. NMR, 6, 135–140.

    Google Scholar 

  • Wittekind, M. and Mueller, L. (1993) J. Magn. Reson., B101, 201–205.

    Google Scholar 

  • Wobbe, C.R., Weissbach, L., Borowiec, J. A., Dean, F. B., Murakami,Y., Bullock, P. and Hurwitz, J. (1987) Proc. Natl. Acad. Sci. USA, 84, 1834–1838.

    Google Scholar 

  • Wold, M.S. and Kelly, T. (1988) Proc. Natl. Acad. Sci. USA, 85,2523–2527.

    Google Scholar 

  • Wold, M.S. (1997) Annu. Rev. Biochem., 66, 61–91.

    Google Scholar 

  • Zuiderweg, E.R.P. and Fesik, S.W. (1989) Biochemistry, 28, 2387–2391.

    Google Scholar 

  • Zhang, O., Kay, L.E., Olivier, P. and Forman-Kay, J.D. (1994) J. Biomol. NMR, 4, 845–858.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, D.M., Lipton, A.S., Isern, N.G. et al. Human replication protein A: Global fold of the N-terminal RPA-70 domain reveals a basic cleft and flexible C-terminal linker†. J Biomol NMR 14, 321–331 (1999). https://doi.org/10.1023/A:1008373009786

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008373009786

Navigation