Skip to main content
Log in

Considerations concerning the non-rigid Earth nutation theory

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

This paper presents the reflections of the Working Group of which the tasks were to examine the non-rigid Earth nutation theory. To this aim, six different levels have been identified: Level 1 concerns the input model (giving profiles of the Earth's density and theological properties) for the calculation of the Earth's transfer function of Level 2; Level 2 concerns the integration inside the Earth in order to obtain the Earth's transfer function for the nutations at different frequencies; Level 3 concerns the rigid Earth nutations; Level 4 examines the convolution (products in the frequency domain) between the Earth's nutation transfer function obtained in Level 2, and the rigid Earth nutation (obtained in Level 3). This is for an Earth without ocean and atmosphere; Level 5 concerns the effects of the atmosphere and the oceans on the precession, obliquity rate, and nutations; Level 6 concerns the comparison with the VLBI observations, of the theoretical results obtained in Level 4, corrected for the effects obtained in Level 5.

Each level is discussed at the state of the art of the developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arias, E. F.: 1994, ‘Relationships between the extragalactic reference frame and the precessionnutation theory’, Joint Discussion on Nutation, oral presentation at XXIInd IAU General Assembly, The Hague, The Netherlands.

  • Arias, E. F., Feissel, M., Charlot, P. and Lestrade, J.-F.: 1995, ‘The celestial system of the International Earth Rotation Service - ICRS’, Astron. Astrophys. 303, 604–608.

    Google Scholar 

  • Anderson, D. L. and Minster, J. B.: 1979, ‘The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble’, Geophys. J. R. Astron. Soc. 58, 431–440.

    Google Scholar 

  • Barnes, R. T. H., Hide, R., White, A. A. and Wilson, C. A.: 1983, ‘Atmospheric angular momentum fluctuations, length-of-day changes and polar motion’, Proc. R. Soc. London A 387, 31–73.

    Google Scholar 

  • Baker, T. F., Curtis, D. J. and Dodson, A. H.: 1996, ‘A new test of Earth tide models in central Europe’, Geophys. Res. Lett. 23(24), 3559–3562.

    Google Scholar 

  • Bizouard, Ch., Brzezinski, A. and Petrov, S.: 1998a, ‘Diurnal atmospheric forcing and temporal variations of the nutation amplitudes’, J. Geodesy 72, 561–577.

    Google Scholar 

  • Bizouard, Ch., Petrov, S. and Brzezinski, A.: 1998b, ‘Atmospheric and ocean contributions to the long periodic components of the nutation’, Oral presentation at the XXIIId GA of the European Geophysical Meeting, Nice, France.

  • Bretagnon, P. and Francou, G.: 1988, ‘Planetary theories in rectangular and spherical variables. VSOP87 solutions’, Astron. Astrophys. 202, 309–315.

    Google Scholar 

  • Bretagnon, P.: 1997, ‘Précision et utilisation des théories planétaires actuelles’, In: N. Capitaine (ed.), Proc. Journées Systè mes de Référence, September 1996, Paris, France, pp. 47–52.

  • Bretagnon, P., Rocher, P. and Simon, J.-L.: 1997, ‘Theory of the rotation of the rigid Earth’, Astron. Astrophys. 319, 305–317.

    Google Scholar 

  • Bretagnon, P. Francou, G., Rocher, P. and Simon, J.-L.: 1998, ‘SMART97: A new solution for the rotation of the rigid Earth’, Astron. Astrophys. 329, 329–338.

    Google Scholar 

  • Bretagnon, P.: 1998, ‘Proposals for a new solution of the precession- nutation’, In: J. Vondrak and N. Capitaine, (eds), Journées Systè mes de Références, September 1997, Prague, Czech Rep., pp. 61–64.

  • Bretagnon, P.: 1999, ‘The planetary theories and the precession of the ecliptic’, In: J. Andersen (ed.), Proc. XXIIIrd General Assembly of IAU, Kyoto, invited paper JD 3 on ‘Precession- nutation and astronomical constants for the dawn of the 21st century’, Highlights of Astronomy, Vol. II, pp. 158–162.

  • Brumberg, V. A., Bretagnon, P. and Francou, G.: 1992, ‘Analytical algorithms of relativistic reduction of astronomical observations’, In: N. Capitaine (ed.), Journées Systè mes de Références, June 1991, Paris, pp. 141–148.

  • Brzezinski, A.: 1994, ‘Polar motion excitation by variations of the effective angular momentum function, II. Extended model’, Manuscripta Geodetica 19, 157–171.

    Google Scholar 

  • Brzezinski, A. and Groten, E.: 1994, ‘The FCN parameters determined from the maximum entropy spectral analysis of the VLBI nutation data’, poster presented at the JD 19 on ‘Nutation’, XXIInd IAU general Assembly, The Hague, The Netherlands.

  • Buffett, B., Mathews, P. M., Herring, T. A. and Shapiro, I. I.: 1993, ‘Forced nutations of the Earth: Contribution from the effects of ellipticity and rotation on elastic deformation’, J. Geophys. Res. 98, 21659–21676.

    Google Scholar 

  • Capitaine, N.: 1998, ‘Formulation of precession and nutation for precise astrometric data’, In: J. Vondrak and N. Capitaine (eds), Proc. Journées Systè mes de Référence Spatio-temporels 1997, Prague, Czech Rep., pp. 83–90.

  • Capitaine, N.: 1999, ‘Overview, formulation and current situation for precession- nutation.’, In: J. Andersen (ed.), Proc. XXIIIrd General Assembly of IAU, Kyoto, invited paper JD 3 on ‘Precession- nutation and astronomical constants for the dawn of the 21st century’, Highlights of Astronomy, Vol. II, pp. 153–157.

  • Chao, B. F., Ray, R. D., Gipson, J. M., Egbert, G. D. and Ma, C: 1996, ‘Diurnal/semidiurnal polar motion excited by oceanic tidal angular momentum’, J. Geophys. Res. 101(B9), 20151–20163.

    Google Scholar 

  • Chapront-Touzé, M. and Chapront, J.: 1983, ‘The lunar ephemeris ELP-2000’, Astron. Astrophys. 124, 50.

    Google Scholar 

  • Chapront, J. and Chapront-Touzé, M.: 1987, ‘ELP 2000-85: Une solution du mouvement de la lune couvrant la période historique’, Notes scientifiques et techniques du Bureau des Longitudes, SO21.

  • Chapront-Touzé, M. and Chapront, J.: 1988, ‘ELP2000-85: A semi analytical lunar ephemeris adequate for historical times’, Astron. Astrophys. 190, 342.

    Google Scholar 

  • Charlot, P., Sovers, O. J., Williams, J. G., Newhall, X. X.: 1995, ‘Precession and nutation from joint analysis of Radio Interferometric and Lunar Laser Ranging observations’, Astron. J. 109(1), 418–427.

    Google Scholar 

  • Corrieu, V., Thoraval, C. and Ricard, Y.: 1995, ‘Mantle dynamics and geoid Green functions’, Geophys. J. Int. 120, 516–523.

    Google Scholar 

  • Defraigne, P.: 1995, ‘Modè les de la convection actuelle dans le manteau terrestre’, PhD thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium (in French).

  • Defraigne, P.: 1997, ‘Geophysical model of the Earth dynamical flattening in agreement with the precession constant’, Geophys. J. Int. 130, 47–56.

    Google Scholar 

  • Defraigne, P. and Dehant, V.: 1996 ‘Toward a new non-rigid Earth nutation’, In: N. Capitaine, B. Kolaczek and S. Debarbat (eds), Proc. Journées Systè mes de Référence 1995, Warsaw, Poland, pp. 45–52.

  • Defraigne, P., Dehant, V. and Hinderer, J.: 1994, ‘Stacking gravity tide measurements and nutation observations to determine the complex eigenfrequency of the nearly diurnal free wobble’, J. Geophys. Res. 99(B5), 9203–9213.

    Google Scholar 

  • Defraigne, P., Dehant, V. and Hinderer, J.: 1995a, Correction to Stacking gravity tide measurements and nutation observations to determine the complex eigenfrequency of the nearly diurnal free wobble’, J. Geophys. Res. 100(B2), 2041–2042.

    Google Scholar 

  • Defraigne, P., Dehant, V. and Pâ quet, P.: 1995b, ‘Link between the retrograde - prograde nutations and the nutations in obliquity and longitude’, Celest. Mech. 62, 363–376.

    Google Scholar 

  • Defraigne, P., Dehant, V. and Wahr, J. M.: 1996, ‘Internal loading of an homogeneous compressible Earth with phase boundaries’, Geophys. J. Int. 125, 173–192.

    Google Scholar 

  • Dehant, V.: 1986, ‘Intégration des équations aux déformations d'une Terre elliptique, inélastique, en rotation uniforme et à noyau liquide’, PhD Thesis, Université catholique de Louvain, Louvainla-Neuve, Belgium (in French).

    Google Scholar 

  • Dehant, V.: 1988, ‘Nutations and inelasticity of the Earth’, In: A. K. Babcock and G. A. Wilkins (eds), Proc. 128th IAU Symp. on ‘Earth's Rotation and Reference Frames for Geodesy and Geodynamics, Washington, U.S.A., 1986, Reidel Publ. Comp., pp. 323–330.

  • Dehant, V.: 1990a, ‘On the nutations of a more realistic Earth model’, Geophys. J. Int. 100, 477–483.

    Google Scholar 

  • Dehant, V.: 1990b, ‘Tidal parameters and nutation: influence from the Earth interior’, Geophys. Monograph 59, 67–77.

    Google Scholar 

  • Dehant, V. and Wahr, J. M.: 1991, ‘The response of a compressible, non-homogeneous Earth to internal loading: Theory’ J. Geomag. Geoelectr. 43, 157–178.

    Google Scholar 

  • Dehant, V. and Capitaine, N.: 1997, ‘On the luni-solar precession, the Tilt-Over-Mode, and the Oppolzer terms’, Celest. Mech. 65, 439–458.

    Google Scholar 

  • Dehant, V. and Defraigne, P.: 1997a, ‘New nutation for a non-rigid Earth’, In: N. Capitaine (ed.), Journées Systè mes de Référence, September 1996, Paris, France, pp. 180–184.

  • Dehant, V. and Defraigne, P.: 1997b, ‘New transfer functions for nutations of a non-rigid Earth’, J. Geophys. Res. 102, 27659–27688.

    Google Scholar 

  • Dehant, V., Hinderer, J., Legros, H. and Lefftz, M.: 1993, ‘Analytical approach to the computation of the Earth, the outer core and the inner core rotational motions’, Phys. Earth Planet. Inter. 76, 259–282.

    Google Scholar 

  • Dehant, V., Bizouard, Ch., Hinderer, J., Legros, H. and Lefftz, M.: 1996, ‘On atmospheric pressure perturbation on precession and nutations’, Phys. Earth planet. Inter. 96(1), 25–40.

    Google Scholar 

  • Dehant, V., Capitaine, N. and Defraigne, P.: 1997, ‘Comparison between values of the dynamical flattening of the Earth derived from various kinds of observations (Precession, J2, seismology)’, In: N. Capitaine (ed.), Proc. Journées Systè mes de Référence, September 1996, Paris, France, pp. 103–104.

  • Dehant, V., Bretagnon, P., Francou, G., Rocher, P., Simon, J.-L., Kinoshita, H., Souchay, J., Roosbeek, F., Defraigne, P., Herring, T. and Mathews, P.M.: 1999, ‘Comparison between the different rigid and non-rigid Earth nutation theories’, In: N. Capitaine (ed.), Proc. Journées Systè mes de Référence Spatio-temporels 1998, Paris, France (in press).

  • de Viron, O., Bizouard, Ch. and Dehant, V.: 1997, ‘Calcul des moments de force produits par l'atmosphè re sur la terre solide, effets correspondants sur la nutation annuelle’, In: N. Capitaine (ed.), Proc. Journées Systè mes de Référence Spatio-temporels 1996, Paris, France, pp. 189–190.

  • de Viron, O. and Dehant, V.: 1998, ‘Comparison between torque and AAM approaches in order to compute the effect of a superficial fluid layer’, Poster at the XXIIId GA of the European Geophysical Meeting, Nice, France.

  • de Viron, O. and Dehant, V.: 1999, ‘Torque approach for the computation of the effect of the atmosphere and oceans on the Earth's rotation’, In: N. Capitaine (ed.), Proc. Journées Systè mes de Référence Spatio-temporels 1998, Paris, France, (in press).

  • de Viron, O., Bizouard, Ch., Salstein, D. and Dehant, V.: 1999, ‘Atmospheric torque on the Earth rotation and comparison with atmospheric angular momentum variations’, J. Geophys. Res. 104(B3), 4861–4875.

    Google Scholar 

  • De Vries, D. and Wahr, J. M.: 1991, ‘The effects of the solid inner core and nonhydrostatic structure on the Earth's forced nutations and Earth tides’, J. Geophys. Res. 96(B5), 8275–8293.

    Google Scholar 

  • Dziewonski, A. M.: 1984, ‘Mapping the lower mantle: Determination of lateral heterogeneity in Pvelocity up to degree and order 6’, J. Geophys. Res. 89(B7), 5923–5952.

    Google Scholar 

  • Dziewonski, A. D. and Anderson, D. L.: 1981, ‘Preliminary reference Earth model’, Phys. Earth planet. Inter. 25, 297–356.

    Google Scholar 

  • Eanes, R. J.: 1995, ‘A study of temporal variations in Earth's gravitational field using Lageos-1 laser range observations’, PhD Thesis, Center for Space Research, Univ. Texas, Austin, CSR-95-8.

  • Eanes, R. J. and Bettadpur, S. V.: 1997, ‘Temporal variability of Earth's gravitational field from satellite laser ranging’, In: R. H. Rapp, A. A. Cazenave and R. S. Nerem (eds), Global Gravity Field and its Variations, Proc. Symp. 116 G3, IAG Symp. Series, Springer.

  • Eubanks, T. M., Steppe, J. A. and Sovers, O. J. 1987, ‘An analysis and intercomparison of VLBI nutation estimates’, In: I. I. Mueller (ed.), ‘Earth Rotation and the Terrestrial Reference Frame’, Columbus, Ohio, 1985, IAU Publ., Vol. 1, pp. 326–340.

  • Feissel, M. and Gontier A.-M.: 1998, ‘Observation of the celestial motion of the Earth's pole’, In: J. Andersen (ed.), Proc. XXIIId GA of IAU 1997, Kyoto, Japan, Highlights of Astronomy, Vol. 11A, Kluwer Academic Publ., Dordrecht, pp. 169–172.

    Google Scholar 

  • Feissel, M. and Mignard, F.: 1998, ‘The adoption of the ICRS on 1 January 1998: meaning and consequences’, Astron. Astrophys. 331, L33–L36.

    Google Scholar 

  • Feissel, M., Mathews, S., Souchay, J., Bizouard, C. and Gontier, A.-M.: 1998, ‘What more could VLBI tell us about the nutations of the real Earth?’, 1998 Fall AGU.

  • Folgueira, M.: 1998, ‘Series Solucion del movimiento de rotacion de la Tierra obtenidas por metodos analiticos’, PhD Thesis, Universidad Computense de Madrid, Spain.

  • Folgueira, M., Souchay, J. and Kinoshita, H.: 1998, ‘Effects on the nutation of the non-zonal harmonics of third degree’, Celest. Mech. 69(4), 373–402.

    Google Scholar 

  • Folgueira, M., Souchay, J. and Kinoshita, H.: 1999, ‘Effects on the nutation of C4m and S4m harmonics’, Celest. Mech. Dyn. Astron. 70, 147–157.

    Google Scholar 

  • Forte, A. M. and Peltier, W. R.: 1987, ‘Plate tectonics and a spherical Earth structure: the importance of poloidal- toroidal coupling’, J. Geophys. Res. 92, 3645–3679.

    Google Scholar 

  • Forte, A. M. and Peltier, W. R: 1991. ‘Viscous flow models of global geophysical observables. 1. Forward problems’, J. Geophys. Res. 96, 20131–20159.

    Google Scholar 

  • Forte, A. M., Peltier,W. R., Dziewonski, A.M. and Woodward, R. L.: 1993a, ‘Dynamic surface topography: A new interpretation based upon mantle flow models derived from seismic tomography’, Geophys. Res. Lett. 20, 225–228.

    Google Scholar 

  • Forte, A. M., Peltier, W. R., Dziewonski, A. M. and Woodward, R. L.: 1993b, ‘Aspherical structure of the mantle, tectonic plate motions, non-hydrostatic geoid, and topography of the core-mantle boundary’, Geophys. Monograph 72, 135–166.

    Google Scholar 

  • Forte, A. M., Woodward, R. L. and Dziewonski, A. M.: 1994, ‘Joint inversions of seismic and geodynamic data for models of three-dimensional mantle heterogeneity’, J. Geophys. Res. 99(B11), 21857–21877.

    Google Scholar 

  • Forte, A. M., Mitrovica, J. X. and Woodward, A. M.: 1995, ‘Seismic-geodynamic determination of the origin of excess ellipticity of the core-mantle boundary’, Geophys. Res. Lett. 22, 1013–1016.

    Google Scholar 

  • Frede, V. and Dehant, V.: 1999, ‘Analytical versus semi-analytical determinations of the oppolzer terms for a non-rigid Earth’, J. Geodesy 73, 94–104.

    Google Scholar 

  • Fukushima, T.: 1991, ‘Geodesic nutation’, Astron. Astrophys. 244, L11–L12.

    Google Scholar 

  • Gegout, P.: 1995, ‘De la variabilité de la rotation de la Terre et du champ de gravité conséquente aux dynamiques de l'Atmosphè re et des Oceans’, PhD Thesis, Ecole et Observatoire de Physique du Globe de Strasbourg, France (in French).

    Google Scholar 

  • Gegout, P., Hinderer, J., Legros, H., Greff, M. and Dehant, V.: 1998, ‘Influence of atmospheric pressure on the free core nutation, precession and some forced nutational motions of the Earth’, Phys. Earth planet. Inter. 106, 337–351.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1990, ‘A Hamiltonian theory for an elastic Earth: canonical variables and kinetic energy’, Celest. Mech. 49, 303–326.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1991a, ‘A Hamiltonian theory for an elastic Earth: elastic energy of deformation’, Celest. Mech. 51, 17–34.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1991b, ‘A Hamiltonian theory for an elastic Earth: first order analytical integration’, Celest. Mech. 51, 35–65.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1991c, ‘A Hamiltonian theory for an elastic Earth: secular rotational acceleration’, Celest. Mech. 52, 381–396.

    Google Scholar 

  • Getino, J.: 1992, ‘Elastic energy for a deformable Earth: general expression’, Celest. Mech. 53, 11–36.

    Google Scholar 

  • Getino, J.: 1993, ‘Perturbed nutations, Love numbers and elastic energy of deformation for Earth models 1066A and 1066B’, Z.A.M.P. 44, 998–1021.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1994, ‘A rigorous Hamiltonian approach to the rotation of elastic bodies’, Celest. Mech. 58, 277–295.

    Google Scholar 

  • Getino, J.: 1995a, ‘Kinetic energy of a non-spherical elastic Earth mantle with Andoyer variables’, Celest. Mech. 61, 21–49.

    Google Scholar 

  • Getino, J.: 1995b, ‘An interpretation of the core-mantle interaction problem’, Geophys. J. Int. 120, 693–705.

    Google Scholar 

  • Getino, J.: 1995c, ‘Forced nutations of a rigid mantle-liquid core Earth model in canonical formulation’, Geophys. J. Int. 122, 803–814.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1995, ‘On the effect of mantle's elasticity on the Earth's rotation’, Celest. Mech. 61, 117–180.

    Google Scholar 

  • Getino, J. and Ferrándiz, J. M.: 1996a, ‘Canonical treatment of dissipative forces between Earth core and mantle’, In: S. Ferraz-Mello et al. (eds), Dynamics, Ephemeris and Astrometry of the Solar System, Proc. I.A.U. Symp. No. 172., Paris, France, pp. 233–238.

  • Getino, J. and Ferrándiz, J. M.: 1996b, ‘Recent progress in the Hamiltonian theory for the deformable Earth: effect of dissipative forces and free and forced nutations’, In: N. Capitaine, B. Kolaczek and S. Debarbat (eds), Proceedings of the Journées Systè mes de Référence spatio-temporels, Warsaw 1995, Poland, pp. 79–82.

  • Gilbert, F. and Dziewonski, A. M.: 1975, ‘An application of normal mode theory to the retrieval of structural parameters and source mechanisms from seismic spectra’, Phil. Trans. R. Soc. A278, 187–269.

    Google Scholar 

  • Gross, R. S.: 1993 ‘The effect of ocean tides on the Earth's rotation as predicted by the results of an ocean tide model’, Geophys. Res. Lett. 20(4), 293–296.

    Google Scholar 

  • Gross, R. S.: 1995, ‘Atmospheric excitation of nutation’, paper presented at the XXIst General Assembly of the International Union of Geodesy and Geophysics, Boulder, Colorado, July 2- 14, 1995.

  • Gross, R. S., Boggs, D. H. and Dickey, J. O.: 1995, ‘Atmospheric excitation of nutation’, (abstract) EOS Trans. AGU, 75(44), Fall Meeting Suppl., 157.

  • Gudmundsson, O. and Clayton, R.W.: 1991, ‘A 2D synthetic study of global traveltime tomography’, Geophys. J. Int. 106, 53–65.

    Google Scholar 

  • Gwinn, C. R., Herring, T. A. and Shapiro, I. I.: 1986, ‘Geodesy by Radio Interferometry: studies of the forced nutations of the Earth. 2. Interpretation’, J. Geophys. Res. 91(B5), 4755–4765.

    Google Scholar 

  • Hager, B. H. and O'Connell, R. J.: 1981, ‘A simple model of plate dynamics and mantle convection’, J. Geophys. Res. 86, 4843–4867.

    Google Scholar 

  • Hager, B. H.: 1984, ‘Subducted slabs and the geoid: excess on mantle rheology and flow’, J. Geophys. Res. 89, 6003–6015.

    Google Scholar 

  • Hager, B. H., Clayton, R. W., Richards, M. A., Comer, R. and Dziewonski, A. M.: 1985, ‘Lower mantle heterogeneity, dynamic topography, and the geoid’, Nature 313, 541–545.

    Google Scholar 

  • Hager, B. H. and Richards, M. A.: 1989, ‘Long-wavelength variations in Earth's geoid: physical models and dynamical implications’, Phil. Trans. R. Soc. London A328, 309–327.

    Google Scholar 

  • Hartmann, T. and Soffel, M.: 1994, ‘The nutation of a rigid Earth model: direct influences of the planets’, Astron. J. 108, 1115–1120.

    Google Scholar 

  • Hartmann, T., Soffel, M. and Ron, C.: 1999, ‘The geophysical approach towards the nutation of a rigid Earth Supplement, Astron. Astrophys. 134271–286.

    Google Scholar 

  • Hartmann, T. and Wenzel, H.-G.: 1995a, ‘Catalogue HW95 of the tide generating potential.’, Bulletin d'Informations Marées Terrestres 123, 9278–9301.

    Google Scholar 

  • Hartmann, T. and Wenzel, H.-G.: 1995b, ‘The HW95 tidal potential catalogue’, Geophys. Res. Lett. 22(24), 9278–9301.

    Google Scholar 

  • Herring, T. A.: 1995, ‘A priorimodel for the reduction of the nutation observations’, invited paper at JD19 on ‘Nutation’, In: I. Appenzeller (ed.), Proc. XXIst GA of IAU 1994, The Hague, The Netherlands, Highlights of Astronomy, Vol. 10, Kluwer Academic Publ., pp. 222–227.

  • Herring, T. A., Gwinn, C. R. and Shapiro, I. I.: 1986, ‘Geodesy by Radio Interferometry: studies of the forced nutations of the Earth. 1. Data analysis’, J. Geophys. Res. 91(B5), 4745–4754.

    Google Scholar 

  • Herring, T. A., Buffett, B. A., Mathews, P.M. and Shapiro, I. I.: 1991, ‘Forced nutations of an Earth: Influence of inner core dynamics, 3. Very long interferometry data analysis’, J. Geophys. Res. 96(B5), 8259–8273.

    Google Scholar 

  • Jacobs, C. S., Sovers, O. J., Gordon, D., Ma, C. and Gontier, A.-M.: 1999, ‘The accuracy of the ICRF: an intercomparison of VLBI analysis software’, In: J. Andersen (ed.), Proc. XXIId GA of IAU 1997, Kyoto, Japan, Highlights of Astronomy, Vol. 11, Kluwer Acad. Publ., Dordrecht, pp. 320–321.

    Google Scholar 

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R. and Joseph, D.: 1996, ‘The NMC/NCAR 40-year reanalysis project’, Bull. Amer. Met. Soc. 77, 437–471.

    Google Scholar 

  • Kanamori, H. and Anderson, D. L.: 1977, ‘Importance of physical dispersion in surface wave and free oscillations problems: Review’, Rev. Geophys. Space Phys. 15(1), 105–122.

    Google Scholar 

  • Karato, S. I.: 1993, ‘Importance of an elasticity in interpretation of seismic tomography’, Geophys. Res. Lett. 20, 1623–1626.

    Google Scholar 

  • Kinoshita, H.: 1977, ‘Theory of the rotation of the rigid Earth’, Celest. Mech. 15, 277–326.

    Google Scholar 

  • Kinoshita, H., Nakajima, K., Kubo, Y., Nakagawa, I., Sasao, T. and Yokohama, K.: 1979, ‘Note on nutation in ephemerides’, Publ. Int. Lat. Obs. Mizusawa 12, 71–108.

    Google Scholar 

  • Kinoshita, H. and Souchay, J.: 1990, ‘The theory of the nutation for the rigid Earth model at the second order’, Celest. Mech. 48, 187–265.

    Google Scholar 

  • Klioner, S.: 1998, ‘Astronomical reference frames in the PPN formalism’, In: J. Vondrak and N. Capitaine (eds), Journées Systè mes de Références, September 1997, Prague, Czech Rep., pp. 32–37.

  • Kovalevsky, J. and McCarthy, D.: 1999, ‘Astronomical effects of current changes in fundamental astrometric references’, XXIIIrd General Assembly of IAU, Kyoto, invited paper JD 3 on ‘Precession-nutation and astronomical constants for the dawn of the 21st century’, Highlights of Astronomy, Vol. II, pp. 182–186.

    Google Scholar 

  • Kubo, Y.: 1982, ‘Perturbation of the oblateness of the Earth and by the planets in the motion of the Moon’, Celest. Mech. 26, 97.

    Google Scholar 

  • Kubo, Y. and Fukushima, T.: 1987, ‘A numerical solution for precession and nutation of the rigid Earth’, Report of hydrographic researches, No. 22, March 1987.

  • Kubo, Y. and Fukushima, T.: 1988, ‘Numerical integration of precession and nutation of the rigid Earth’, In: A. K. Babcock and G. A. Wilkins (eds), Proc. 128th IAU Symp. on ‘Earth's Rotation and Reference Frames for Geodesy and Geodynamics’, Washington, U.S.A., 1986, Reidel, pp. 331–340.

  • Legros, H., Hinderer, J., Lefftz, M. and Dehant, V.: 1993, ‘The influence of the solid inner core on gravity changes and spatial nutations induced by luni-solar tides and surface loading’, Phys. Earth planet. Inter. 76, 283–315.

    Google Scholar 

  • Lieske, J. H., Lederle, T., Fricke, W. and Morando, B.: 1977, ‘Expressions for the precession quantities based upon the IAU (1976) system of astronomical constants’, Astron. Astrophys. 58, 1–16.

    Google Scholar 

  • Liu, H. P., Anderson, D. L. and Kanamori, H.: 1976, ‘Velocity dispersion due to inelasticity: implications for seismology and mantle composition’, Geophys. J. R. Astron. Soc. 47, 41–58.

    Google Scholar 

  • Ma, C., Gipson, J. M., Gordon, D., Caprette, D. S., Ryan, J. W.: 1994, ‘Site positions and velocities, source positions, and Earth orientation parameters from NASA space geodesy program - GSFC: solution GLB932’, In: P. Charlot (ed.), IERS Technical Note 17, Observatoire de Paris, Paris, pp. R9–R12.

    Google Scholar 

  • Ma, C., Arias, E. F., Eubanks, T.M., Fey, A. L., Gontier, A.-M., Jacobs, C. S., Sovers, O. J., Archinal, B. A. and Charlot, P.: 1998, ‘The international celestial reference frame as realized by very long baseline interferometry’, Astron. J. 116, 516–546.

    Google Scholar 

  • Mathews, P. M. and Shapiro, I. I.: 1996, ‘Recent advances in nutation studies’, In: N. Capitaine, B. Kolaczek and S. Debarbat (eds), Proc. Journées Systè mes de référence 1995, Warsaw, Poland, pp. 61–66.

  • Mathews, P. M., Buffett, B. A., Herring, T. A. and Shapiro, I. I.: 1991a, ‘Forced nutations of the Earth: Influence of inner core dynamics. I. Theory’, J. Geophys. Res. 96(B5), 8219–8242.

    Google Scholar 

  • Mathews, P. M., Buffett, B. A., Herring, T. A. and Shapiro, I. I.: 1991b, ‘Forced nutations of the Earth: Influence of inner core dynamics. II. Numerical results and comparisons’, J. Geophys. Res. 96(B5), 8243–8258.

    Google Scholar 

  • Mathews, P. M. and Dehant, V.: 1995, ‘Current status of geophysical model for nutation’, invited paper at JD 19 on ‘Nutation’, In: I. Appenzeller (ed.), Proc. XXIst GA of IAU 1994, The Hague, The Netherlands, Highlights of Astronomy, Vol. 10, Kluwer Academic Publ., pp. 243–246.

  • Mathews, P. M., Buffett, B.A. and Herring, T. A.: 1998, ‘Earth rotation and core modeling: Couplings of the mantle, outer core, and inner core’, EGS, Session G12: 03 Effects of the core, Nice, France, April 1998.

  • Mathews, P. M., Buffett, B. A. and Herring, T. A.: 1999, ‘The magnetic coupling contribution to nutation’, In: Proc. Journés Systè mes de Référence 1998, Paris, France, (in press).

  • McCarthy, D. D.: 1992, ‘IERS Standards’, IERS Technical Note 13.

  • McCarthy, D. D.: 1996, ‘IERS Conventions’, IERS Technical Note 21.

  • McCarthy, D. D. and Luzum, B. J.: 1999, ‘A condensed model of the motion of the celestial pole’, (in preparation).

  • Morelli, A. and Dziewonski, A. M.: 1987, ‘Topography of the core-mantle boundary and lateral homogeneity of the liquid core’, Nature 325, 677–683.

    Google Scholar 

  • Neuberg, J. and Wahr, J. M.: 1991, ‘Detailed investigation of a spot on the core-mantle boundary using digital PcP data’, Phys. Earth planet. Inter. 68, 132–143.

    Google Scholar 

  • Ponte, R. M., Salstein, D. A. and Rosen, R. D.: 1991, ‘Sea level response to pressure forcing in a barotropic numerical model’, J. Phys. Oceanogr. 21(7), 1043–1057.

    Google Scholar 

  • Ponte, R. M.: 1993, ‘Variability in a homogeneous global ocean forced by barometric pressure’, Dyn. Atmos. Oceans 18, 209–234.

    Google Scholar 

  • Pulliam, R. J. and Stark, P. B.: 1993, ‘Bumps on the core-mantle boundary: are they facts or artefacts?’, J. Geophys. Res. 98, 1943–1955.

    Google Scholar 

  • Ricard, Y., Fleitout, L. and Froidevaux, C.: 1984, ‘Geoid heights and lithospheric stresses for a dynamical Earth’, Ann. Geophys. 2, 267–286.

    Google Scholar 

  • Ricard, Y. and Vigny, C.: 1989, ‘Mantle dynamics with induced plate tectonics’, J. Geophys. Res. 94, 17543–17559.

    Google Scholar 

  • Ricard, Y., Richards, M. A., Lithgow-Bertelloni, C. and Le Stunff, Y.: 1993, ‘A geodynamical model of mantle density heterogeneities’, J. Geophys. Res. 98, 21895–21909.

    Google Scholar 

  • Richards, M. A. and Hager, B. H.: 1984, ‘Geoid anomalies in a dynamic Earth’, J. Geophys. Res. 89, 5987–6002.

    Google Scholar 

  • Richards, M. A. and Hager, B. H.: 1988, ‘The Earth's geoid and the large-scale structure of mantle convection’, In: S. K. Runcorn (ed.), Physics of the Planets, Wiley, New York, pp. 247–272.

    Google Scholar 

  • Rodgers, A. and Wahr, J. M.: 1993, ‘Influence of core-mantle boundary topography from ISC PcPand PkPtraveltimes’, Geophys. J. Int. 115, 991–1011.

    Google Scholar 

  • Roosbeek, F.: 1996, ‘RATGP: An harmonic development of the tide generating potential using an analytical method’, Geophys. J. Int. 126, 197–204.

    Google Scholar 

  • Roosbeek, F.: 1998, ‘Potentiel de marées, nutations et précession d'une Terre rigide’, PhD Thesis, Université catholique de Louvain, Louvain-la-Neuve, Belgium, 166 pp (in French).

    Google Scholar 

  • Roosbeek, F.: 1999, ‘Diurnal and subdiurnal terms in the RDAN97 series’, Celest.Mech.(submitted).

  • Roosbeek, F. and Dehant, V.: 1998, ‘RDAN97: An analytical development of rigid Earth nutation series using the torque approach’, Celest. Mech. Dyn. Astron. 70, 215–253.

    Google Scholar 

  • Roosbeek, F., Defraigne, P., Feissel, M. and Dehant, V.: 1999, ‘The free core nutation period stays between 431 and 434 sidereal days’, Geophys. Res. Lett. 26(1), 131–134.

    Google Scholar 

  • Rothacher, M., Beutler, G., Herring, T. A. and Weber, R.: 1998, ‘Estimation of nutation using the global positioning system’, J. Geophys. Res. 104(B3), 4835–4859.

    Google Scholar 

  • Salstein, D. A., Kann, D. M., Miller, A. J. and Rosen, R. D.: 1993, ‘The Sub-Bureau for Atmospheric Angular Momentum of the International Earth Rotation Service: a meteorological data center with geodetic applications’, Bull. Amer. Meteor. Soc. 74(1), 67–80.

    Google Scholar 

  • Salstein, D. A.: 1995, ‘Atmospheric angular momentum (AAM) and Earth rotation’, In: N. Capitaine, B. Kolaczek, and S. Débarbat (eds), Proc. Journées Systè mes de Référence Spatio-Temporels 1995, Space Research Centre, Warsaw, Poland, pp. 139–146.

  • Salstein, D. A. and Rosen, R. D.: 1997, ‘Global momentum and energy signals from reanalysis systems’, In: Proc. 7th Conf. on Climate Variations, 2- 7 February 1997, Long Beach, California, pp. 344–348.

  • Sasao, T. and Wahr, J. M.: 1981, ‘An excitation mechanism for the free core nutation’, Geophys. J. R. Astr. Soc. 64, 729–746.

    Google Scholar 

  • Schastok, J.: 1997, ‘A new nutation series for a more realistic model Earth’, Geophys. J. Int. 130, 137–150.

    Google Scholar 

  • Schubert, S. D., Rood, R. B. and Pfaendtner, J.: 1993, ‘An assimilated dataset for Earth science applications’, Bull. Amer. Meteor. Soc. 74, 2331–2342.

    Google Scholar 

  • Schuh, H. and Haas, R.: 1998, ‘Earth tides in VLBI observations’, in: B. Ducarme and P. Paquet (eds), Proc. Int. Symp. on ‘Earth Tide’, Brussels, Belgium, pp. 101–110.

  • Schwiderski, E. W.: 1978, ‘Hydrodynamically defined ocean bathymetry’, NSWC/DL TR 3888, Dahlgren, Virginia.

  • Schwiderski, E.W.: 1980, ‘On charting global ocean tides’, Rev. Geophys. Space Phys. 18, 243–268.

    Google Scholar 

  • Seidelmann, P. K.: 1982, ‘1980 IAU theory of nutation: the final report of the IAU working group on nutation’, Celest. Mech. 27, 79–106.

    Google Scholar 

  • Seiler, U.: 1989, ‘An investigation to the tides of the world ocean and their instantaneous angular momentum budgets’, PhD Thesis, Hamburg Univ.

  • Seiler, U.: 1991, ‘Periodic changes of the angular momentum budget due to tides of the world ocean’, J. Geophys. Res. 96, 10287–10300.

    Google Scholar 

  • Shum, C. K., Woodworth, P. L., Andersen, O. B., Egbert, G., Francis, O., King, C., Klosko, S., Le Provost, Ch., Li, X., Malines, J., Parke, M., Ray, R., Schlax, M., Stammer, D., Tierney, C., Vincent, P. and Wunsch, C.: 1997, ‘Accuracy assessment of recent ocean tide models’, J. Geophys. Res. 102(C11), 25173–25194.

    Google Scholar 

  • Simon, J. L., Bretagnon, P., Chapront, J., Chapront-Touzé M., Francou, G. and Laskar, J.: 1994, ‘Numerical expressions for precession formulae and mean elements for the Moon and the planets’, Astron. Astrophys. 282, 663–683.

    Google Scholar 

  • Soffel, M. and Klioner, S.: 1998, ‘The present status of Einstein relativistic celestial mechanics’, In: J. Vondrak and N. Capitaine (eds), Journées Systè mes de Références, September 1997, Prague, Czech Rep., pp. 27–31.

  • Souchay, J.: 1993, ‘Comparison between theories of nutation for a rigid-Earth model’, Astron. Astrophys. 276, 266–277.

    Google Scholar 

  • Souchay, J., and Kinoshita, H.: 1991, ‘Comparison of the new nutation series with numerical integration’, Celest. Mech. 52, 45–55.

    Google Scholar 

  • Souchay, J. and Kinoshita, H.: 1996, ‘Corrections and new developments in rigid Earth nutation theory: I. Luni-solar influence including indirect planetary effects’, Astron. Astrophys. 312, 1017–1030.

    Google Scholar 

  • Souchay, J. and Kinoshita, H.: 1997, ‘Corrections and new developments in rigid Earth nutation theory: II. Influence of second-order geopotential and direct planetary effect’, Astron. Astrophys. 318, 639–652.

    Google Scholar 

  • Souchay, J., Feissel, M., Bizouard, Ch., Capitaine, N. and Bougeard, M.: 1995, ‘Precession and nutation for a non-rigid Earth: comparison between theory and VLBI observations’, Astron. Astrophys. 299, 277–287.

    Google Scholar 

  • Standish, E. M.: 1982, ‘Orientation of the JPL Ephemerides, DE200/LE200, to the Dynamical Equinox of J2000’, Astron. Astrophys. 114, 297–302.

    Google Scholar 

  • Standish, E. M.: 1990, ‘The observational basis for JPL's DE200, the planetary ephemerides of the astronomical almanac’, Astron. Astrophys. 233, 252–271.

    Google Scholar 

  • Standish, E. M., Newhall, X. X., Williams, J. G. and Folkner W. F.: 1995, ‘JPL Planetary and Lunar Ephemerides, DE403/LE403’, JPL Memorandum IOM (Inter Office Memorandum) 314, 10–127.

    Google Scholar 

  • Standish, E. M.: 1998, ‘JPL Planetary and Lunar Ephemerides, DE405/LE405’, JPL Memorandum IOM (Inter Office Memorandum), 312, F-98–048.

    Google Scholar 

  • Su, W. J., Woodward, R. L. and Dziewonski, A. M.: 1994, ‘Degree 12 model of shear velocity heterogeneity in the mantle’, J. Geophys. Res. 99(B4), 6945–6980.

    Google Scholar 

  • Tanimoto, T.: 1990, ‘Long-wavelength S-wave velocity structure throughout the mantle’, Geophys. J. Int. 100, 327–336.

    Google Scholar 

  • Thoraval, C., Machetel, P. and Cazenave, A.: 1994., ‘Influence of mantle compressibility and ocean warping on dynamical models of the geoid’, Geophys. J. Int. 117, 566–573.

    Google Scholar 

  • Wahr, J. M.: 1981, ‘The forced nutations of an elliptical, rotating, elastic and oceanless Earth’, Geophys. J. R. Astron. Soc. 64, 705–727.

    Google Scholar 

  • Wahr, J. M.: 1982, ‘The effects of the atmosphere and oceans on the Earth's wobble and the seasonal variations in the length of day. I. Theory’, Geophys. J. R. Astron. Soc. 70, 349–372.

    Google Scholar 

  • Wahr, J. M.: 1983, ‘The effects of the atmosphere and oceans on the Earth's wobble and the seasonal variations in the length of day. II. Results’, Geophys. J. R. Astron. Soc. 74, 4851–4872.

    Google Scholar 

  • Wahr, J. M. and Bergen, Z.: 1989, ‘The effects of mantle inelasticity on nutations, Earth tides and tidal variations of rotation rate’, Geophys. J. R. Astron. Soc. 87, 633–668.

    Google Scholar 

  • Wahr, J. M. and Sasao, T.: 1981, ‘A diurnal resonance in the ocean tide and in the Earth's load response due to the resonant free core nutation’, Geophys. J. R. Astron. Soc. 64, 747–765.

    Google Scholar 

  • Widmer, R., Masters, G. and Gilbert, F.: 1991, ‘Spherically symmetric attenuation within the Earth from normal mode data, Geophys. J. Int. 104, 541–553.

    Google Scholar 

  • Williams, J. G.: 1994, ‘Contributions to the Earth's obliquity rate, precession and nutation’, Astron. J. 108, 711–724.

    Google Scholar 

  • Williams, J. G.: 1995, ‘Planetary-induced nutation of the Earth: direct terms’, Astron. J. 110, 1420–1426.

    Google Scholar 

  • Woodhouse, J. H. and Dziewonski, A. M.: 1984, ‘Mapping the upper mantle: Three-dimensional modeling of earth structure by inversion of seismic waveforms’, J. Geophys. Res. 89(B7), 5953–5986.

    Google Scholar 

  • Woodward, R. L., Forte, A. M., Su, W. J. and Anderson, D. L.: 1993, ‘Constraints on the large scale structure of the Earth's mantle’, In: R. Takahashi, Jeanloz and D. Rubie (eds), Evolution of the Earth and Planets, AGU Publ., Washington D.C., Geophys. Monogr. 74, 89–109.

    Google Scholar 

  • Zahel, W.: 1995, ‘Assimilating ocean tide determined data into global ocean models’, J. Marine Syst. 6, 3–13.

    Google Scholar 

  • Zharov, V. E.: 1998, ‘Nutation of the Earth and atmospheric tides’, In: J. Vondrak and N. Capitaine (eds), Journées Systè mes de Références, September 1997, Prague, Czech Rep., pp. 87–90.

  • Zhu, S. Y. and Groten, E.: 1989, ‘Various aspects of numerical determination of Nutation constants. I. Improvement of rigid-Earth nutation’, Astron. J. 98(3), 1104–1111.

    Google Scholar 

  • Zhu, Y., Shum, C. K., Cheng, M. K., Tapley, B. D. and Chao, B. F.: 1996, ‘Long period variations in gravity field caused by mantle inelasticity’, J. Geophys. Res. 101, 11243–11248.

    Google Scholar 

  • Zschau, J. and Wang, R.: 1987, ‘Imperfect elasticity in the Earth's mantle. Implications for Earth tides and long period deformations’, In: Proc. 10th Int. Symp. on ‘Earth's Tides’, Madrid, Spain, 1985, R. Vieira and Consejo Superior de Investigaciones Cientificas (eds), pp. 379–382.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, F., Bizouard, C., Bretagnon, P. et al. Considerations concerning the non-rigid Earth nutation theory. Celestial Mechanics and Dynamical Astronomy 72, 245–309 (1998). https://doi.org/10.1023/A:1008364926215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008364926215

Navigation