Skip to main content
Log in

Application of Volterra and Wiener Theories for Nonlinear Parameter Estimation in a Rotor-Bearing System

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Volterra and Wiener theories provide the concepts of linear,bilinear, tri-linear, etc., kernels, which upon convolution with theexcitation force, can be employed to represent the response of anonlinear system. Based on these theories, higher-order frequencyresponse functions (FRFs) are employed to estimate the nonlinearstiffness of rolling element bearings, supporting a rigid rotor. Therotor-bearing assembly is idealized as a single-degree-freedom system,with cubic nonlinearity. The analysis involves a third-order kernelrepresentation of the system response. The first and third-order kerneltransforms are extracted from the measurements of the appliedwhite-noise excitation and the resultant response. A third-order kernelfactor is synthesized from this first-order kernel and is processedalong with the third-order kernel for estimation of the nonlinearparameter. Damping is assumed to be linear in the analysis. Theprocedure is demonstrated through measurements on a laboratory test rig.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Volterra, V., Theory of Functionals and of Integral and Integro-Differential Equations, Dover, New York, 1958.

    Google Scholar 

  2. Billings, S. A., ‘Identification of nonlinear systems – A survey’, Proceedings of IEEE 127(6), 1980, 272–285.

    Google Scholar 

  3. Korenberg, M. J. and Hunter, I. W., ‘The identification of nonlinear biological systems: Wiener kernel approaches’, Annals of Biomedical Engineering 18, 1990, 629–654.

    Google Scholar 

  4. Rugh, W. J., Nonlinear System Theory: The Volterra/Wiener Approach, Johns Hopkins University Press, Baltimore, MD, 1981.

    Google Scholar 

  5. Wiener, N., Nonlinear Problems in Random Theory, The Massachusetts Institute of Technology and John Wiley and Sons, New York, 1958.

    Google Scholar 

  6. Lee, Y. W. and Schetzen, M., ‘Measurement of Wiener kernels of nonlinear system by crosscorrelation’, International Journal of Control 2(3), 1965, 237–254.

    Google Scholar 

  7. French, A. S. and Butz, E. G., ‘Measuring the Wiener kernels of a nonlinear system using the fast Fourier transform algorithm’, International Journal of Control 17(3), 1973, 529–539.

    Google Scholar 

  8. Crum, L., ‘Simultaneous reduction and expansion of multidimensional Laplace transform kernels’, in Proceedings of 1st Symposium on Test and Identification of Nonlinear Systems, 1975, pp. 89–105.

  9. Bedrosian, E. and Rice, S., ‘Application of Volterra-system analysis’, in Proceedings of 1st Symposium on Test and Identification of Nonlinear Systems, 1975, pp. 15–27.

  10. Orabi, I. I. and Ahmadi, G., ‘A functional series expansion method for response analysis of nonlinear systems subjected to random excitations’, International Journal of Non-Linear Mechanics 22(6), 1987, 451–465.

    Google Scholar 

  11. Gifford, S. J. and Tomlinson, G. R., ‘Recent advances in the application of functional series to nonlinear structures’, Journal of Sound and Vibration 135(2), 1989, 289–317.

    Google Scholar 

  12. Bendat, J. S., Nonlinear System Analysis and Identification from Random Data, Wiley, New York, 1990.

    Google Scholar 

  13. Bendat, J. S., Nonlinear System Techniques and Applications, Wiley, New York, 1998.

    Google Scholar 

  14. Khan, A. A. and Vyas, N. S., ‘Non-linear parameter estimation using Volterra and Wiener theories’, Journal of Sound and Vibration 221(5), 1999, 805–821.

    Google Scholar 

  15. Ragulskis, K. M., Jurkauskas, A. Yu., Atstupenas, V. V., Vitkute, A. Yu., and Kulvec, A. P., Vibration of Bearings, Mintis Publishers, Vilnius, 1974.

    Google Scholar 

  16. Harris, T. A., Rolling Bearing Analysis, Wiley, New York, 1984.

    Google Scholar 

  17. Dimentberg, M. F., Statistical Dynamics of Nonlinear and Time-Varying Systems, Research Studies Press/Wiley, New York, 1988.

    Google Scholar 

  18. Stolarski, T. A., Tribology in Machine Design, Heinemann Newnes, Oxford, 1990.

    Google Scholar 

  19. Choy, F. K., Braun, M. J., and Hu Y., ‘Nonlinear transient and frequency response analysis of a hydrodynamic journal bearing’, ASME Journal of Tribology 114, 1992, 448–454.

    Google Scholar 

  20. Childs, D., Turbomachinery Rotordynamics: Phenomena, Modeling and Analysis, Wiley-Interscience, New York, 1993.

    Google Scholar 

  21. Soong, T. T. and Grigoriu, M., Random Vibration of Mechanical and Structural Systems, Prentice-Hall, Englewood Cliffs, NJ, 1993.

    Google Scholar 

  22. Lin, Y. K. and Cai, G. Q., Probabilistic Structural Dynamics. Advanced Theory and Applications, McGraw-Hill, New York, 1995.

    Google Scholar 

  23. Zhou, R. S. and Hashimoto, F., ‘A new rolling contact surface and ‘no run-in’ performance bearings’, ASME Journal of Tribology 117, 1995, 166–170.

    Google Scholar 

  24. Schetzen, M., The Volterra and Wiener Theories of Nonlinear Systems, Wiley, New York, 1980.

    Google Scholar 

  25. Raemer, H. R., Statistical Communication Theory and Applications, Prentice-Hall, Englewood Cliffs, NJ, 1969.

    Google Scholar 

  26. Tiwari, R. and Vyas, N. S., ‘Estimation of nonlinear stiffness parameters of rolling element bearings from random response of rotor bearing systems’, Journal of Sound and Vibration 187(2), 1995, 229–239.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A.A., Vyas, N.S. Application of Volterra and Wiener Theories for Nonlinear Parameter Estimation in a Rotor-Bearing System. Nonlinear Dynamics 24, 285–304 (2001). https://doi.org/10.1023/A:1008352829782

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008352829782

Navigation