Advertisement

Journal of Biomolecular NMR

, Volume 13, Issue 2, pp 139–147 | Cite as

The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY

  • David Fushman
  • David Cowburn
Article

Abstract

Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D‖/D⊥−1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D‖/D⊥≥1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems.

anisotropic overall motion chemical shift anisotropy NMR relaxation TROSY 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.Google Scholar
  2. Akke, M., Brüschweiler, R. and Palmer, A. (1993) J. Am. Chem. Soc., 115, 9832–9833.Google Scholar
  3. Boyd, J. and Redfield, C. (1998) J. Am. Chem. Soc., 120, 9692–9693.Google Scholar
  4. Bremi, T., Bruschweiler, R. and Ernst, R.R. (1997) J. Am. Chem. Soc., 119, 4272–4284.Google Scholar
  5. Brink, D.M. and Satchler, G.R. (1993) Angular Momentum, Clarendon Press, Oxford.Google Scholar
  6. Chatfield, D.C., Szabo, A. and Brooks, B.R. (1998) J. Am. Chem. Soc., 120, 5301–5311.Google Scholar
  7. Clore, G.M. and Gronenborn, A.M. (1998) Proc. Natl. Acad. Sci. USA, 95, 5891–5898.Google Scholar
  8. Clore, G.M., Gronenborn, A.M., Szabo, A. and Tjandra, N. (1998) J. Am. Chem. Soc., 120, 4889–4890.Google Scholar
  9. Fischer, M.W.F., Zeng, L., Pang, Y., Hu, W., Majumdar, A. and Zuiderweg, E.R.P. (1997) J. Am. Chem. Soc., 119, 12629–12642.Google Scholar
  10. Fushman, D., Ohlenschläger, O. and Rüterjans, H. (1994) J. Biomol. Struct. Dyn., 4, 61–78.Google Scholar
  11. Fushman, D. and Cowburn, D. (1998) J. Am. Chem. Soc., 120, 7109–7110.Google Scholar
  12. Fushman, D., Najmabadi-Haske, T., Cahill, S.M., Zheng, J., LeVine, H.A., III and Cowburn, D. (1998a) J. Biol. Chem., 273, 2835–2843.Google Scholar
  13. Fushman, D., Tjandra, N. and Cowburn, D. (1998b) J. Am. Chem. Soc., 120, 10947–10952.Google Scholar
  14. Goldman, M. (1984) J. Magn. Reson., 60, 437–452.Google Scholar
  15. Harbison, G.S., Jelinski, L.W., Stark, R.E., Torchia, D.A., Herzfeld, J. and Griffin, R.G. (1984) J. Magn. Reson., 60, 79–82.Google Scholar
  16. Hartzell, C.J., Whitfield, M., Oas, T.G. and Drobny, G.P. (1987) J. Am. Chem. Soc., 109, 5966–5969.Google Scholar
  17. Hiyama, Y., Niu, C., Silverton, J., Bavoso, A. and Torchia, D. (1988) J. Am. Chem. Soc., 110, 2378–2383.Google Scholar
  18. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D. (1992) J. Magn. Reson., 97, 359–375.Google Scholar
  19. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.Google Scholar
  20. Lee, L.K., Rance, M., Chazin, W.J. and Palmer, A.G., III (1997) J. Biomol. NMR, 9, 287–298.Google Scholar
  21. Mai, W., Hu, W., Wang, C. and Cross, T.A. (1993) Protein Sci., 2, 532–542.Google Scholar
  22. Oas, T.G., Hartzell, C.J., Dahlquist, F.W. and Drobny, G.P. (1987) J. Am. Chem. Soc., 109, 5962–5966.Google Scholar
  23. Ottiger, M., Tjandra, N. and Bax, A. (1997) J. Am. Chem. Soc., 119, 9825–9830.Google Scholar
  24. Palmer, A., Sketon, N., Chazin, W., Wright, P. and Rance, M. (1992) Mol. Phys., 75, 699–711.Google Scholar
  25. Peng, J. and Wagner, G. (1992) J. Magn. Reson., 94, 82–100.Google Scholar
  26. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371.Google Scholar
  27. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1998) J. Am. Chem. Soc., 120, 6394–6400.Google Scholar
  28. Shoji, A., Ozaki, T., Fujito, T., Deguchi, K., Ando, S. and Ando, I. (1989) Macromolecules, 22, 2860–2863.Google Scholar
  29. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.Google Scholar
  30. Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nat. Struct. Biol., 4, 443–449.Google Scholar
  31. Tjandra, N., Szabo, A. and Bax, A. (1996) J. Am. Chem. Soc., 118, 6986–6991.Google Scholar
  32. Woessner, D. (1962) J. Chem. Phys., 37, 647–654.Google Scholar
  33. Wüthrich, K. (1998) Nat. Struct. Biol., 5 Suppl, 492–495.Google Scholar
  34. Yang, D. and Kay, L.E. (1996) J. Mol. Biol., 263, 369–382.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • David Fushman
    • 1
  • David Cowburn
    • 1
  1. 1.The Rockefeller UniversityNew YorkU.S.A.

Personalised recommendations