Skip to main content
Log in

Jacobi Polynomials, Type II Codes, and Designs

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Jacobi polynomials were introduced by Ozeki in analogy with Jacobi forms of lattices. They are useful to compute coset weight enumerators, and weight enumerators of children. We determine them in most interesting cases in length at most 32, and in some cases in length 72. We use them to construct group divisible designs, packing designs, covering designs, and (t,r)-designs in the sense of Calderbank-Delsarte. A major tool is invariant theory of finite groups, in particular simultaneous invariants in the sense of Schur, polarization, and bivariate Molien series. A combinatorial interpretation of the Aronhold polarization operator is given. New rank parameters for spaces of coset weight distributions and Jacobi polynomials are introduced and studied here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.F. Assmus, Jr., V. Pless, On the covering radius of extremal self-dual codes, IEEE Trans. on Information Theory, Vol. IT-29 (1983) pp. 359-363.

    MathSciNet  Google Scholar 

  2. E. Bannai, M. Ozeki, Construction of Jacobi forms from certain combinatorial polynomials, Proceedings of the Japan Academy, Vol. 72, Ser. A, No. 1, (1996) pp. 12-15.

    MathSciNet  Google Scholar 

  3. W. Bosma, J. Cannon, C. Playoust, The Magma algebra system I: The user language, Jounal of Symbolic Computation, Vol. 11 (1997) pp. 1-31.

    Google Scholar 

  4. J. Cannon, C. Playoust, Magma: A new computer algebra system, Euromath Bulletin, Vol.2,No. 1, (1996) pp. 113-144.

    MathSciNet  Google Scholar 

  5. A.E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs. Springer-Verlag, Berlin, Heidelberg (1985).

    Google Scholar 

  6. A.R. Calderbank, P. Delsarte, On error-correcting codes and invariant linear forms. SIAM J. of Discr. Math., Vol. 6 (1993) pp. 1-23.

    MathSciNet  Google Scholar 

  7. A.R. Calderbank, P. Delsarte, Extending the t-design concept. Trans. of The AMS Vol. 338 (1993) pp. 941-952.

    MathSciNet  Google Scholar 

  8. A.R. Calderbank, P. Delsarte, N.J.A. Sloane, A strengthening of the Assmus-Mattson theorem, IEEE Trans. on Information Theory, Vol. IT-37 (1991) pp. 1261-1268.

    MathSciNet  Google Scholar 

  9. P. Camion, B. Courteau, A. Monpetit, Cosets weight enumerators of the extremal self-dual binary codes of length 32, Proceedings of Eurocode 92, CISM Lect. No. 339, Springer (1993) pp. 17-29.

  10. G.D. Cohen, M. Karpovsky, H.F. Mattson, Jr.r., J.R. Schatz, Covering radius-survey and recent results, IEEE Trans. on Information Theory, Vol. IT-31, (1985) pp. 328-343.

    MathSciNet  Google Scholar 

  11. J.H. Conway, V. Pless, On the enumeration of self-dual codes, J. Comb. Theory Ser. A, Vol. 28 (1980) pp. 26-53.

    Article  MathSciNet  Google Scholar 

  12. S.T. Dougherty, M. Harada, New Extremal Self-dual codes of Length 68, preprint (1996).

  13. J.H. Dinitz, D.R. Stinson, Contemporary Design Theory: a collection of surveys, Wiley (1992).

  14. M. Eichler, D. Zagier, The Theory of Jacobi Forms, Birkhäuser (1985).

  15. A. Gleason, Weight polynomials of self-dual codes and the MacWilliams identities, in: Actes Congrès International de Mathématiques Nice 1970, Vol. 3, Gauthiers-Villars (1971) pp. 211-215.

  16. D.M. Gordon, G. Kuperberg, O. Patashnik, New constructions for covering designs, preprint (1995). http://sdcc12.ucsd.edu/ xm3dg/cover.html

  17. G.T. Kennedy, V. Pless, A coding theoretic approach to extending designs, Discrete Math. Vol. 142 (1995) 155-168.

    Article  MathSciNet  Google Scholar 

  18. C.L. Mallows, N.J.A. Sloane, An upper bound for self-dual codes, Information and Control Vol. 22 (1973) pp. 188-200.

    Article  MathSciNet  Google Scholar 

  19. H. Koch, On self-dual doubly even extremal codes, Discr. Math. Vol. 83 (1990) pp. 291-300.

    Article  MATH  Google Scholar 

  20. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, North-Holland (1977).

  21. M. Ozeki, On the notion of Jacobi polynomials for codes, Math. Proc. Cambridge Phil. Soc. Vol. 121 (1997) pp. 15-30.

    MATH  MathSciNet  Google Scholar 

  22. V. Pless, A classification of self-orthogonal codes over GF(2), Discr. Math. Vol. 3 (1972) pp. 209-246.

    Article  MATH  MathSciNet  Google Scholar 

  23. V. Pless, Introduction to the Theory of Error Correcting Codes, second edition, Wiley (1989).

  24. V. Pless, N.J.A. Sloane, On the classification and enumeration of self-dual codes, J. of Comb. Theory Ser. A Vol. 18 (1975) pp. 313-335.

    MathSciNet  Google Scholar 

  25. I. Schur, Vorlesungen ueber Invarianttheorie, Springer (1968).

  26. R.P. Stanley, Invariants of finite groups and their applications to combinatorics, Bull. AMS Vol. 3 (1979) pp. 475-497.

    MathSciNet  Google Scholar 

  27. B. Sturmfels, Algorithms in Invariant Theory, Springer (1993).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonnecaze, A., Solé, P. Jacobi Polynomials, Type II Codes, and Designs. Designs, Codes and Cryptography 16, 215–234 (1999). https://doi.org/10.1023/A:1008327726247

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008327726247

Navigation