Skip to main content

Evolution Induced Catastrophe in a Nonlinear Dynamical Model of Material Failure

Abstract

In order to study the failure of disordered materials, theensemble evolution of a nonlinear chain model was examined by using astochastic slice sampling method. The following results were obtained.(1) Sample-specific behavior, i.e. evolutions are different from sampleto sample in some cases under the same macroscopic conditions, isobserved for various load-sharing rules except in the globally meanfield theory. The evolution according to the cluster load-sharing rule,which reflects the interaction between broken clusters, cannot bepredicted by a simple criterion from the initial damage pattern and eventhen is most complicated. (2) A binary failure probability, itstransitional region, where globally stable (GS) modes andevolution-induced catastrophic (EIC) modes coexist, and thecorresponding scaling laws are fundamental to the failure. There is asensitive zone in the vicinity of the boundary between the GS and EICregions in phase space, where a slight stochastic increment in damagecan trigger a radical transition from GS to EIC. (3) The distribution ofstrength is obtained from the binary failure probability. This, likesample-specificity, originates from a trans-scale sensitivity linkingmeso-scopic and macroscopic phenomena. (4) Strong fluctuations in stressdistribution different from that of GS modes may be assumed as aprecursor of evolution-induced catastrophe (EIC).

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Sahimi, M. and Arbabi, S., 'Mechanics of disordered solid. III. Fracture properties', Physical Review B 47, 1993, 713-722.

    Google Scholar 

  2. 2.

    de Arcangelis, L., Redner, S., and Herrmann, H. J., 'A random fuse model for breaking processed', Journal of Physics (Paris) 46, 1985, 585-590.

    Google Scholar 

  3. 3.

    Meakin, P., 'Models for material failure and deformation', Science 252, 1991, 226-234.

    Google Scholar 

  4. 4.

    Bai, Y. L., Lu, C.S., Ke, F. J., and Xia, M. F., 'Evolution induced catastrophe', Physics Letters A 185, 1994, 196-200.

    Google Scholar 

  5. 5.

    Xia, M. F., Song, Z. Q., Xu, J. B., Zhao, K. H., and Bai, Y. L., 'Sample-specific behavior in failure models of disordered media', Communication in Theoretical Physics 25, 1996, 49-54.

    Google Scholar 

  6. 6.

    Liang, N., Liu, Q., Li, J., and Song, H., 'A chains net-work model simulating meso mechanical behavior and micro damage evolution of in situ reinforced ceramics, in Advanced in Engineering Plasticity & Its Applications, T. Abe and T. Tsuta (eds.) Pergamon, Amsterdam, 1996, pp. 141-146.

    Google Scholar 

  7. 7.

    Ibnabdeljalil, M. and Curtin, M. A., 'Strength and reliability of fiber-reinforced composites: Localized loadsharing and associated size effects', International Journal of Solids Structures 34, 1997, 2649-2668.

    Google Scholar 

  8. 8.

    Harlow, D. G. and Phoenix, S. L., 'Probability distribution for the strength of composite materials I: two-level bonds', International Journal of Fracture 17, 1981, 347-372.

    Google Scholar 

  9. 9.

    Hemmer, R. C. and Hause, H., 'The distribution of simultaneous fiber failures in fiber bundles', ASME Journal of Applied Mechanics 59, 1992, 909-914.

    Google Scholar 

  10. 10.

    Durbury, P. M. and Leath, P. L., 'Failure probability and average strength of disordered systems', Physical Review Letters 72, 1994, 2805-2908.

    Google Scholar 

  11. 11.

    Xia, M. F., Bai, Y. L., and Ke, F. J., 'Statistical description of pattern evolution in damage-fracture', Science in China (A) 37, 1994, 331-340.

    Google Scholar 

  12. 12.

    Xia, M. F., Ke, F. J., Bai, J., and Bai, Y. L., 'Threshold diversity and trans-scale sensitivity in a nonlinear evolution model', Physics Letters A 236, 1997, 60-64.

    Google Scholar 

  13. 13.

    Herrmann, H. J. and Roux, S., Statistical Models for the Fracture of Disordered Media, North-Holland, Amsterdam, 1990.

    Google Scholar 

  14. 14.

    Bai, Y. L., Ke, F. J., and Xia, M. F., 'Deterministically stochastic behavior and sensitivity to initial configuration in damage fracture', Science Bulletin 39, 1994, 892-895 [in Chinese].

    Google Scholar 

  15. 15.

    Ke, F. J., Fang, X., Xia, M. F., Zhao, D. W., and Bai, Y. L., 'Contingent sensitivity to configuration in a nonlinear evolution system', Progress in Natural Science 8, 1998, 170-173.

    Google Scholar 

  16. 16.

    Xia, M. F., Wu, W. M., Zhang, C. F., and Zhao, K. H., 'Characteristics of the basins of attraction in neutral network dynamics', in Proceedings of Beijing International Workshop on Neural Networks, K. H. Zhao, C. F. Zhang, and Z. X. Zhu (eds.), World Scientific, Singapore, 1989, pp. 116-123.

    Google Scholar 

  17. 17.

    Knott, J. F., Fundamentals of Fracture Mechanics, Butterworths, London, 1973.

    Google Scholar 

  18. 18.

    Xing, X. S., 'The foundation of nonequilibrium statistical fracture mechanics', Advances in Mechanics 21, 1991, 153-168 [in Chinese].

    Google Scholar 

  19. 19.

    Xia, M. F., Bai, Y. L., and Ke, F. J., 'A stochastic jump and deterministic dynamics model of impact failure evolution with rate effect', Theoretical and Applied Fracture Mechanics 24, 1996, 189-196.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xia, M., Ke, F., Wei, Y. et al. Evolution Induced Catastrophe in a Nonlinear Dynamical Model of Material Failure. Nonlinear Dynamics 22, 195–214 (2000). https://doi.org/10.1023/A:1008324329908

Download citation

  • material failure
  • evolution-induced catastrophe
  • sample-specificity
  • binary failure probability