Skip to main content
Log in

Fate and behavior of organic compounds in an artificial saturated subsoil under controlled redox conditions: The sequential soil column system

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A system was developed to investigate the fate and behavior of anthropogenic organic contaminants at concentrations present in polluted subsoils and aquifers. A sequential soil column system was constructed to simulate redox conditions from methanogenic, sulfate-reducing, denitrifying, to aerobic conditions which normally occur in a leachate pollution plume. This system allowed the simulation of subsurface pollution with a range of xenobiotics and the observation of the microbial response to this contamination. After an adaptation period of up to about 7 months, 2,4-dichlorophenol and 2-nitrophenol were eliminated and perchloroethene disappeared almost completely in the methanogenic column. Toluene was partially transformed under sulfate-reducing conditions, and nearly completely in the nitrate-reducing column. The same applied to naphthalene under denitrifying and aerobic conditions. Aerobically, a fraction of benzene was transformed, and 1,4-dichlorobenzene decreased to very low residual concentrations in one system. No significant transformation of 1,1-dichloroethene could be seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aamand J, Jørgensen C, Arvin E & Jensen BK (1989) Microbial adaptation to degradation of hydrocarbons in polluted and unpolluted groundwater. J. Contam. Hydrol. 4: 299–312

    Google Scholar 

  • Alexander M (1994) Biodegradation and Bioremediation (pp 114–130). Academic Press, San Diego, USA

    Google Scholar 

  • Albrechtsen H-J, Heron G & Christensen TH (1995) Limiting factors for microbial Fe(III)-reduction in a landfill leachate polluted aquifer (Vejen, Denmark). FEMS Microbiol. Ecol. 16: 233–248

    Google Scholar 

  • Ammann AA & Rüttimann TB (1995) Simultaneous determination of small organic and inorganic anions in environmental water samples by ion-exchange chromatography. J. Chromatogr. A 706: 259–269

    Google Scholar 

  • Anonymous (1988) Richtlinien für die Untersuchung von Abwasser und Oberflächenwasser — Allgemeine Hinweise und Analysenmethoden Vol 1 (pp 39/1–39/8). Eidgenössisches Departement des Innern, Bern, Switzerland

  • Beller HR, Spormann AM, Sharma PK, Cole JR & Reinhard M (1996) Isolation and characterization of a novel toluene-degrading, sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188–1196

    Google Scholar 

  • Bosma TNP, Cottaar FHM, Posthumus MA, Teunis CJ, van Veldhuizen A, Schraa G & Zehnder AJB (1994) Comparison of reductive dechlorination of hexachloro-1,3-butadiene in Rhine sediment and model systems with hydroxocobalamin. Environ. Sci. Technol. 28: 1124–1128

    Google Scholar 

  • Burback BL, Perry JJ & Rudd LE (1994) Effect of environmental pollutants and their metabolites on a soil mycobacterium. Appl. Microbiol. Biotechnol. 41: 134–136

    Google Scholar 

  • Christensen TH, Kjeldsen P, Lyngkilde J & Tjell JC (1989) Behavior of leachate pollutants in groundwater. In: Christensen TH, Cossu R, Stegmann R (Eds) Sanitary Landfilling. Process, Technology, and Environmental Impact (pp 465–481). Academic Press, London

    Google Scholar 

  • Christensen TH, Kjeldsen P, Albrechtsen H-J, Heron G, Nielsen PH, Bjerg PL & Holm PE (1994) Attenuation of landfill leachate pollutants in aquifers. Critical Rev. Environ. Sci. Technol. 24: 119–202

    Google Scholar 

  • Dolan ME & McCarty PL (1995) Methanotrophic chloroethene transformation capacities and 1,1-dichloroethene transformation product toxicity. Environ. Sci. Technol. 29: 2741–2747

    Google Scholar 

  • Egli T & Weilenmann H-U (1989) Isolation, characterization, and physiology of bacteria able to degrade nitrilotriacetate. Tox. Assess. 4: 23–34

    Google Scholar 

  • Freedman DL & Gossett JM (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl. Environ. Microbiol. 55: 2144–2151

    Google Scholar 

  • Gibson DT & Subramanian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (Ed) Microbial Degradation of Organic Compounds (pp 188–252). Marcel Dekker, New York, Basel

    Google Scholar 

  • Hess A, Höhener P, Hunkeler D & Zeyer J (1996) Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns. J. Contam. Hydrol. 23: 329–345

    Google Scholar 

  • Holliger C (1995) The anaerobic microbiology and biotreatment of chlorinated ethenes. Current Opinion Biotech. 6: 347–351

    Google Scholar 

  • Johnston JJ, Borden RC & Barlaz MA (1996) Anaerobic biodegradation of alkylbenzenes and trichloroethylene in aquifer sediment down gradient of a sanitary landfill. J. Contam. Hydrol. 23: 263–283

    Google Scholar 

  • Kerndorff H, Schleyer R & Dieter HH (1993) Bewertung der Grundwassergefährdung von Altablagerungen — Standardisierte Methoden und Massstäbe. WABOLU-Hefte 1/1993, Bundesgesundheitsamt Berlin, Germany

    Google Scholar 

  • Kowalewski JB (1995) Prüfwerte → Eingreifwerte → Sanierungszielwerte. Ernst & Sohn Verlag, Berlin

    Google Scholar 

  • Kuhn EP, Colberg PJ, Schnoor JL, Wanner O, Zehnder AJB & Schwarzenbach RP (1985) Microbial transformations of substituted benzenes during infiltration of river water to groundwater: laboratory column studies. Environ. Sci. Technol. 19: 961–968

    Google Scholar 

  • Langenhoff AAM, Zehnder AJB & Schraa G (1996) Behavior of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7: 267–274

    Google Scholar 

  • Lesage S, Jackson RE, Priddle MW & Riemann PG (1990) Occurrence and fate of organic solvent residues in anoxic groundwater at the Gloucester landfill, Canada. Environ. Sci. Technol. 24: 559–566

    Google Scholar 

  • Lovley DR (1991) Dissimilatory Fe(III) and Mn(IV) reduction. Microbiol. Rev. 55: 259–287

    Google Scholar 

  • Lovley DR (1997) Potential for anaerobic bioremediation of BTEX in petroleum-contaminated aquifers. J. Industr. Microbiol. Biotechnol. 18: 75–81

    Google Scholar 

  • Ludvigsen L, Heron G, Albrechtsen H-J & Christensen TH (1995) Geomicrobial and geochemical redox processes in a landfill-polluted aquifer. In: Hinchee RE, Wilson JT, Downey DC (Eds) Intrinsic bioremediation (pp 135–142). Battelle Press, Columbus, OH

    Google Scholar 

  • Lyngkilde J, Christensen TH, Skov B & Foverskov A (1991) Redox zones downgradient of a landfill and implications for biodegradation of organic compounds. In: Hinchee RE, Olfenbuttel RF (Eds) In Situ Bioreclamation: Applications and Investigations for Hydrocarbon and Contaminated Site Remediation (pp 363–376). Butterworth-Heinemann, Boston

    Google Scholar 

  • Lyngkilde J & Christensen TH (1992) Redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contam. Hydrol. 10: 273–289

    Google Scholar 

  • Mihelcic JR & Luthy RG (1988) Microbial degradation of acenaphthene and naphthalene under denitrification conditions in soil-water systems. Appl. Environ. Microbiol. 54: 1188–1198

    Google Scholar 

  • Mihelcic JR & Luthy RG (1991) Sorption and microbial degradation of naphthalene in soil-water suspensions under denitrification conditions. Environ. Sci. Technol. 25: 169–177

    Google Scholar 

  • Nay M (1994) Literaturstudie Altlasten. EAWAG-Forschungsschwerpunkt 1993–1997. “Nachhaltige Ressourcenbewirtschaftung — am Beispiel Gewässer und anthropogene Sedimente”. Swiss Federal Institute of Environmental Science and Technology, Dübendorf, Switzerland

    Google Scholar 

  • Pignatello JJ & Xing B (1996) Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci Technol. 30: 1–11

    Google Scholar 

  • Roberts PV, Schreiner J & Hopkins GD (1982) Field study of organic water quality changes during groundwater recharge in the Palo Alto Baylands. Water Res. 16: 1025–1035

    Google Scholar 

  • Schachtschabel P, Blume H-P, Hartge K-H & Schwertmann U (1982) Lehrbuch der Bodenkunde (p 255). Enke, Stuttgart, Germany

    Google Scholar 

  • Schött W (1992) Modellhafte Sanierung von Altlasten. Umweltbundesamt — Projektträgerschaft “Abfallwirtschaft und Altlastensanierung” Bundesminister für Forschung und Technologie, Berlin

    Google Scholar 

  • Schraa G, van der Meer JR, van Neerven ARW, Colberg PJ & Zehnder AJB (1986) Microbial transformation of micropollutants in soil systems. In: Jensen V, Kjøller A, Sørensen LH (Eds) Proceedings of the FEMS Symposium Kollekolle/Copenhagen, 4–8. Aug. 1985 (pp 315–326). Elsevier, London, New York

    Google Scholar 

  • Van der Meer JR, Bosma TNP, de Bruin WP, Harms H, Holliger C, Rijnaarts HHM, Tros ME, Schraa G & Zehnder AJB (1992) Versatility of soil column experiments to study biodegradation of halogenated compounds under environmental conditions. Biodegradation 3: 265–284

    Google Scholar 

  • Vogel TM & McCarty PL (1985) Biotransformation of tetrachloroethylene to trichloroethylene, dichloroethylene, vinyl chloride, and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 49: 1080–1083

    Google Scholar 

  • Zeyer J, Kuhn EP & Schwarzenbach RP (1986) Rapid microbial mineralization of toluene and 1,3-dimethylbenzene in the absence of molecular oxygen. Appl. Environ. Microbiol. 52: 944–947

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nay, M., Snozzi, A.J.B. & Zehnder, A.J.B. Fate and behavior of organic compounds in an artificial saturated subsoil under controlled redox conditions: The sequential soil column system. Biodegradation 10, 75–82 (1999). https://doi.org/10.1023/A:1008321917025

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008321917025

Navigation