Skip to main content
Log in

Degradation of anaerobic reductive dechlorinationproducts of Aroclor 1242 by four aerobic bacteria

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

We studied the aerobic degradation of eight PCB congeners which comprise from 70 to 85% of the anaerobic dechlorination products from Aroclor 1242, including2-, 4-, 2,4-, 2,6-, 2,2'-, 2,4'-, 2,2',4-, and2,4,4'-chlorobiphenyl (CB), and the biodegradation of their mixtures designed to simulate anaerobic dechlorination profiles M and C. StrainsComamonas testosteroni VP44 and Rhodococcus erythreus NY05 preferentially oxidizeda para-substituted ring, while Rhodococcus sp. RHA1, similar to well known strain Burkholderia sp. LB400, preferably attackedan ortho-chlorinated ring. Strains with ortho-directed attack extensively degraded2,4'- and 2,4,4'-CB into 4-chlorobenzoate, while bacteria with para-directed attack transformed these congeners mostly into potentially problematicmeta-cleavage products. The strains that preferentiallyoxidized an ortho-substituted ring readily degradedseven of the eight congeners supplied individually; only 2,6-CB was poorly degraded. Degradationof 2,2'- and 2,4,4'-CB was reduced when present in mixtures M and C. Higher efficiencies of degradation of the individual congeners and defined PCB mixtures M and C and greater production of chlorobenzoates were observed with bacteria that preferentially attackan ortho-substituted ring. PCB congeners 2,4'-, 2,2',4-, and 2,4,4'-CB canbe used to easily identify bacteria with ortho-directed attack whichare advantageous for use in the aerobic stage of the two-phase (anaerobic/aerobic)PCB bioremediation scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abramowicz DA (1990) Aerobic and anaerobic biodegradation of PCBs: a review. Crit. Rev. Biotechnol. 10: 241–251

    Google Scholar 

  • Abramowicz DA, Brennan MJ, Van Dort HM & Gallagher EL (1993) Factors influencing the rate of polychlorinated biphenyl degradation in Hudson River sediments. Environ. Sci. Technol. 27: 1125–1131

    Google Scholar 

  • Baxter RM & Sutherland DA (1984) Biochemical and photochemical processes in the degradation of chlorinated biphenyls. Environ. Sci. Technol. 18: 608–610

    Google Scholar 

  • Bedard DL & Haberl ML (1990) Influence of chlorine substitution pattern on the degradation of polychlorinated biphenyls by eight bacterial strains. Microb. Ecol. 20: 87–102

    Google Scholar 

  • Bedard DL & Quensen JF III (1995) Microbial reductive dechlorination of polychlorinated biphenyls. In: Young LY & Cerniglia CE (Eds) Microbial Transformation and Degradation of Toxic Organic Chemicals, (pp 127–216). Wiley-Liss, Inc., New York

    Google Scholar 

  • Bedard DL, Haberl ML, May RJ & Brennan MJ (1987a) Evidence for novel mechanisms of polychlorinated biphenyl metabolism in Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1103–1112

    Google Scholar 

  • Bedard DL, Unterman R, Bopp LH, Brennan MJ, Haberl ML & Johnson C (1986) Rapid assay for screening and characterizing microorganisms for the ability to degrade polychlorinated biphenyls. Appl. Environ. Microbiol. 51: 761–768

    Google Scholar 

  • Bedard DL, Wagner RE, Brennan MJ, Haberl ML & Brown JF Jr (1987b) Extensive degradation of Aroclors and environmentally transformed polychlorinated biphenyls by Alcaligenes eutrophus H850. Appl. Environ. Microbiol. 53: 1094–1102

    Google Scholar 

  • Billingsley KA, Backus SM, Juneson C & Ward OP (1997) Comparison of the degradation patterns of polychlorinated biphenyl congeners in Aroclors by Pseudomonas strain LB400 after growth on various carbon sources. Can J. Microbiol. 43: 1172–1179

    Google Scholar 

  • Bopp LH (1986) Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1: 23–29

    Google Scholar 

  • Brown JF Jr, Bedard DL, Brennan MJ, Carnahan JC, Feng H & Wagner RE (1987a) Polychlorinated biphenyl dechlorination in aquatic sediments. Science 236: 709–712

    Google Scholar 

  • Brown JF Jr, Wagner RE, Feng H, Bedard DL, Brennan MJ, Carnahan JC & May RJ (1987b) Environmental dechlorination of PCBs. Environ. Toxicol. Chem. 5: 579–593

    Google Scholar 

  • Brenner V, Arensdorf JJ & Focht DD (1994) Genetic construction of PCB degraders. Biodegradation 5: 359–377

    Google Scholar 

  • Frame GM, Wagner RE, Carnahan JC, Brown JF Jr., May RJ, Smullen LA & Bedard DL (1996) Comprehensive, quantitative, congener-specific analyses of eight Aroclors and complete PCB congener assignments on DB-1 capillary GC columns. Chemosphere 33: 603–623

    Google Scholar 

  • Furukawa K (1982) Microbial degradation of polychlorinated biphenyls (PCBs). In: Chakrabarty AM (Ed) Biodegradation and Detoxification of Environmental Pollutants, (pp. 33–57). CRC Press, Boca Raton, FL

    Google Scholar 

  • Furukawa K, Tomizuka N & Kamibayashi A (1979a) Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 38: 301–310

    Google Scholar 

  • Furukawa, K., Tonomura K & Kamibayashi A (1979b) Metabolism of 2,4,4′-trichlorobiphenyl by Acinetobacter sp. P6. Agric. Biol. Chem. 43: 1577–1583

    Google Scholar 

  • Harkness MR, McDermott JB, Abramowicz DA, Salvo JJ, Flanagan WP, Stephens ML, Mondello FJ, May RJ, Lobos JH, Carroll KM, Brennan MJ, Bracco AA, Fish KM, Warner GL, Wilson PR, Dietrich DK, Lin DK, Morgan CB & Gately WL (1993) In situ stimulation of aerobic PCB biodegradation in Hudson River sediments. Science 259: 503–507

    Google Scholar 

  • Havel J & Reineke W (1993) Microbial degradation of chlorinated acetophenones. Appl. Environ. Microbiol. 59: 2706–2712

    Google Scholar 

  • Higson FK & Focht DD (1990) Bacterial degradation of ringchlorinated acetophenones. Appl. Environ. Microbiol. 56: 3678–3685

    Google Scholar 

  • Massé RF. Messier F, Ayotte C, Lévesque M-F & Sylvestre M (1989) A comprehensive gas chromatographic/mass spectrometric analysis of 4-chlorobiphenyl bacterial degradation products. Biomed. Environ. Mass Spectrometry 18: 27–47

    Google Scholar 

  • Mondello FJ, Turcich MP, Lobos JH & Erickson BD (1997) Identification and modification of biphenyl dioxygenase sequences that determine the specificity of polychlorinated biphenyl degradation. Appl. Environ. Microbiol. 63: 3096–3103

    Google Scholar 

  • Pellizari VH, Bezborodnikov S, Quensen JF III & Tiedje JM (1996) Evaluation of strains isolated by growth on naphthalene and biphenyl for hybridization of genes to dioxygenase probes and polychlorinated biphenyl-degrading ability. Appl. Environ. Microbiol. 62: 2053–2058

    Google Scholar 

  • Reineke W (1998). Development of hybrid strains for the mineralization of chloroaromatics by patchwork assembly. Annu. Rev. Microbiol. 52: 287–331

    Google Scholar 

  • Quensen JF III & Tiedje JM (1998) Evaluation of PCB dechlorination in sediments. In: Sheehan D. (Ed.) Methods in Biotechnology, Vol. 2, Bioremediation Protocol, (pp 257–273). Humana Press, Inc., Totowa, NJ

    Google Scholar 

  • Seeger M, Timmis KN & Hofer B (1995) Conversion of chlorobiphenyls into phenylhexadienoates and benzoates by the enzymes of the upper pathway for polychlorobiphenyl degradation encoded by the bph locus of Pseudomonas sp. strain LB400. Appl. Environ. Microbiol. 61: 2654–2658

    Google Scholar 

  • Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M & Yano K (1995) A novel transformation of polychlorinated biphenyls by Rhodococcus sp. strain RHA1. Appl. Environ. Microbiol. 61: 3353–3358

    Google Scholar 

  • Unterman R (1996) A history of PCB biodegradation. In: Crawford RL & Crawford DL (Eds) Bioremediation. Principles and Applications (pp 209–253). Cambridge University Press

  • Williams WA, Lobos JH & Cheetham WE (1997) A phylogenetic analysis of aerobic polychlorinated biphenyl-degrading bacteria. Int. J. Syst. Bacteriol. 47: 207–210

    Google Scholar 

  • Zaitsev GM & Karasevich YN (1985) Primary steps in metabolism of 4-chlorobenzoate in Arthrobacter globiformis. Mikrobiologiya 50: 423–428 (in Russian)

    Google Scholar 

  • Zwiernik MJ, Quensen JF III & Boyd SA (1998) FeSO4 amendments stimulate extensive anaerobic PCB dechlorination. Environ. Sci. Technol. 32: 3360–3365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga V. Maltseva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maltseva, O.V., Tsoi, T.V., Quensen, J.F. et al. Degradation of anaerobic reductive dechlorinationproducts of Aroclor 1242 by four aerobic bacteria. Biodegradation 10, 363–371 (1999). https://doi.org/10.1023/A:1008319306757

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008319306757

Navigation