Skip to main content
Log in

Biotransformation of lantadene A (22β-angeloyloxy-3-oxoolean-12-en-28-oic acid), the pentacyclic triterpenoid, by Alcaligenes faecalis

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

A bacterial strain capable of biotransformation oflantadene A(22β-angeloyloxy-3-oxo-olean-12-en-28-oic acid),the pentacyclic hepatotoxin of lantana (Lantanacamara var. aculeata) has been isolated fromsoil using lantadene A as the sole carbon source. Theorganism is Gram negative, rod shaped, motile,catalase positive and has been identified as Alcaligenes faecalis. The isolate has been found tobe specific for lantadene A and did not utilizelantadene B. In studies using sucrose as an additionalcarbon source, A. faecalis elicitedbiotransformation of lantadene A to its trans isomer22β-tigloyloxy-3-oxoolean-12-en-28-oic acid,designated as lantadene X and two other minormetabolites which could not be isolated in pure state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barre TJ, Bowden BF, Coll, JC, Jesus JDe, Fuente VEDe La, Janairo GC & Ragasa CY (1997) A bioactive triterpene from Lantana camara. Phytochem. 45: 321–324

    Google Scholar 

  • Barton DHR, Mayo PDe, Warnhoff EW, Jeger O & Perold GW (1954) Triterpenoids. Part XIX. The constitution of lantadene B. J. Chem. Soc. 3689–3692

  • Barton DHR, Mayo PDe & Orr JC (1956) Triterpenoids. Part XXIII. The nature of lantadene A. J. Chem. Soc. 4160–4162

  • Cook AM, Grossenbacher H & Hutter R (1983) Isolation and cultivation of microbes with biodegradative potential. Experientia 39: 1191–1198

    Google Scholar 

  • Dimkov R & Topalova Y (1993) Dependence of the microbiological degradation of aryl-containing xenobiotics on their concentration. Acta Microbiol. Bulgarica. 29: 9–16

    Google Scholar 

  • Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, Janzen WP, Chen IS & Lee KH (1994) Anti-AIDS agents, 11. Betulinic acid and platanic acid asanti-AIDS principles from Syzigium claviflorum, and the anti-AIDS activity of structurally related triterpenoids. J. Natr. Prod. 57: 243–247

    Google Scholar 

  • Gregg K, Cooper CL, Schafer DJ, Sharpe H, Beard CE, Allen G & Xu J (1994) Detoxification of the plant toxin fluoroacetate by a genetically modified rumen bacterium. Bio/Technology 12: 1361–1365

    Google Scholar 

  • Gregg K (1995) Engineering gut flora of ruminant livestock to reduce forage toxicity: progress and problems. Trends Biotechnol. 13: 418–421

    Google Scholar 

  • Grover N, Johl PP, Singh S, Kahlon RS (1993) Degradation of chlorobenzoates and effect of induction on chlorobenzoate utilization in Pseudomonas sp. Ind. J. Microbiol. 33: 105–110

    Google Scholar 

  • Harder W (1981) Enrichment and characterization of degrading organisms. In: Leisinger T, Cook AM, Hutter R & Nuesch J (Eds.), Microbiological Degradation of Xenobiotics and Recalcitrant Compounds (pp. 77–96). Academic Press, London

    Google Scholar 

  • Hart NK, Lamberton JA, Sioumis AA & Suares H (1976) New triterpenoids of Lantana camara. A comparative study of the constituents of several taxa. Aust. J. Chem. 29: 655–671.

    Google Scholar 

  • Hutchinson CR (1994) Drug synthesis by genetically engineered microorganisms. Biotechnology 12: 375–380

    Google Scholar 

  • Inada A, Nakanish T, Tokuda H, Nishino H, Iwasima A & Sharma OP (1995) Inhibitory effects of lantadenes and related triterpenoids on Epstein-Barr virus activation. Planta Medica 61: 558–559

    Google Scholar 

  • Inada A, Nakanish T, Tokuda H, Nishino H & Sharma OP (1997) Antitumor promoting activities of lantadenes on mouse skin tumors and mouse hepatic tumors. Planta Medica 63: 272–274

    Google Scholar 

  • Kiyohara H, Takizawa N, Date H, Torigoe S & Yano K (1990) Characterization of a phenantherene degradation plasmid from Alcaligenes faecalis. AFK2. J. Ferment. Bioengg. 69: 54–56

    Google Scholar 

  • Kawasaki H, Tone N & Tonomura K (1981) Plasmid-determined dehalogenation of haloacetates in Moraxella species. Agric. Biol. Chem. 45: 29–34.

    Google Scholar 

  • Krasnobajew V (1984) Terpenoids, Chapter 4. In: Kielich K (Ed.), Biotechnology, Vol. 6a (pp. 97–197). Verlag Chemie Weinheim

  • Liu J (1995) Pharmacology of oleanolic acid and ursolic acid. J. Ethnopharmacol. 49: 57–68

    Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL & Randall RJ (1951) Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–275

    Google Scholar 

  • Mahato, SB & Kundu AP (1994) 13C NMR spectra of pentacyclic triterpenoids — a compilation and some salient features. Phytochem. 37: 1517–1575

    Google Scholar 

  • Matsumura S, Shimura Y, Terayama K & Kiyohara T (1994) Effect of molecular weight and stereoregulatity on biodegradation of poly(vinyl alcohol) by Alcaligenes faecalis. Biotechnol. Lett. 16: 1205–1210

    Google Scholar 

  • Nick A, Wright DA & Sticher O (1994) Antibacterial triterpenoid acids from Dillenia papuana. J. Natr. Prod. 57: 1245–1250

    Google Scholar 

  • Pass MA, Seawright AA, Lamberton JA & Heath TJ (1979) Lantadene A toxicity in sheep. A model for cholestasis. Pathol. 11: 89–94

    Google Scholar 

  • Pengsuparp T, Cai L, Fong HHS, Kinghorn AD & Pezzuto JM (1994) Pentacyclic triterpenes derived from Maprounea africana are potent inhibitors of HIV-1 reverse transcriptase. J. Natr. Prod. 57: 415–418

    Google Scholar 

  • Rodwell, VW (1993) Catabolism of carbon skeleton of amino acids, Chapter 32. In: Murray RT, Granner DK, Mayes PA & Rodwell VW (Eds.), Harper's Biochemistry (pp. 303–325). 23rd edn. Prentice Hall Inc. London

    Google Scholar 

  • Safayhi H & Sailer ER (1997) Anti-inflammatory actions of pentacyclic triterpenoids. Planta Medica. 63: 487–493

    Google Scholar 

  • Scott AI (1994) Genetically engineered synthesis of natural products. J. Natr. Prod. 57: 557–573

    Google Scholar 

  • Selinger LB, Forberg CW & Cheng KJ (1996) The rumen: a unique source of enzymes for enhancing livestock production. Anaerobe 2: 263–284

    Google Scholar 

  • Sharma OP, Dawra RK, Datta AK & Kanwar SS (1997a) Biodegradation of lantadene A, the pentacyclic triterpenoid hepatotoxin by Pseudomonas picketii. Lett. Appl. Microbiol. 24: 229–232

    Google Scholar 

  • Sharma OP, Dawra RK & Pattabhi V (1991a) Molecular structure, polymorphism and toxicity of lantadene A, the pentacyclic triterpenoid from the hepatotoxic plant Lantana camara. J. Biochem. Toxicol 6: 57–63

    Google Scholar 

  • Sharma OP, Makkar HPS & Dawra RK (1988) A review of the noxious plant Lantana camara. Toxicon 26: 975–987

    Google Scholar 

  • Sharma OP & Sharma PD (1989) Natural products of the lantana plant — the present and prospects. J. Sci. Industr. Res. 48: 471–478

    Google Scholar 

  • Sharma OP, Sharma S & Dawra RK (1997b) Reverse phase high performance liquid chromatographic separation and quantification of lantadenes using isocratic systems. J. Chromat. 786: 181–184

    Google Scholar 

  • Sharma OP, Vaid J & Sharma PD (1991b) Comparison of lantadenes content and toxicity of different taxa of the lantana plant. J. Chem. Ecol. 17: 2283–2291

    Google Scholar 

  • Shivaraman N (1992) Binary substrate biodegradation by microorganisms. Ind. J. Microbiol. 32: 277–280

    Google Scholar 

  • Stothers JB (1972) Carbon-13-NMR Spectroscopy. Academic Press, New York

    Google Scholar 

  • Stucki G, Krebser U & Leisinger T (1983) Bacterial growth on 1,2-dichloroethane. Experientia 39: 1271–1273

    Google Scholar 

  • Verma DK, Singh SK, Nath G & Tripathi V (1997) Antimicrobial active triterpenoids from Lantana species. Indian Drugs 34: 390–392

    Google Scholar 

  • Wang ZY (1994) Anticarcinogenesis of licorice and its major triterpenoid constituents. In: Food Phytochemicals II: Tea, Spices, and Herbs. Chapter 23. American Chemical Society

  • Wehrli, FW & Wirthlin T (1980) Interpretation of Carbon-13 NMR Spectra. Heyden, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Om P. Sharma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, A., Sharma, O.P., Dawra, R.K. et al. Biotransformation of lantadene A (22β-angeloyloxy-3-oxoolean-12-en-28-oic acid), the pentacyclic triterpenoid, by Alcaligenes faecalis . Biodegradation 10, 373–381 (1999). https://doi.org/10.1023/A:1008310511539

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008310511539

Navigation