Skip to main content
Log in

Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study

  • Published:
Journal of Biomolecular NMR Aims and scope Submit manuscript

Abstract

Backbone dynamics of uniformly 15N-labeled free barnase and its complex with unlabelled barstar have been studied at 40 °C, pH 6.6, using 15N relaxation data obtained from proton-detected 2D {1H}-15N NMR spectroscopy. 15N spin-lattice relaxation rate constants (R1), spin-spin relaxation rate constants (R2), and steady-state heteronuclear {1H}-15N NOEs have been measured at a magnetic field strength of 14.1 Tesla for 91 residues of free barnase and for 90 residues out of a total of 106 in the complex (excluding three prolines and the N-terminal residue) backbone amide 15N sites of barnase. The primary relaxation data for both the cases have been analyzed in the framework of the model-free formalism using both isotropic and axially symmetric models of the rotational diffusion tensor. As per the latter, the overall rotational correlation times (τm) are 5.0 and 9.5 ns for the free and complexed barnase, respectively. The average order parameter is found to be 0.80 for free barnase and 0.86 for the complex. However, the changes are not uniform along the backbone and for about 5 residues near the binding interface there is actually a significant decrease in the order parameters on complex formation. These residues are not involved in the actual binding. For the residues where the order parameter increases, the magnitudes vary significantly. It is observed that the complex has much less internal mobility, compared to free barnase. From the changes in the order parameters, the entropic contribution of NH bond vector motion to the free energy of complex formation has been calculated. It is apparent that these motions cause significant unfavorable contributions and therefore must be compensated by many other favorable contributions to effect tight complex formation. The observed variations in the motion and their different locations with regard to the binding interface may have important implications for remote effects and regulation of the enzyme action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford.

    Google Scholar 

  • Arcus, V.L., Vuilleumier, S., Freund, S.M., Bycroft, M. and Fersht, A.R. (1995) J. Mol. Biol., 254, 305–321.

    Google Scholar 

  • Beeser, S.A., Goldenberg, D.P. and Oas, T.G. (1997) J. Mol. Biol., 269, 154–164.

    Google Scholar 

  • Bhattacharya, S., Falzone, C.J. and Lecomte, T.J. (1999) Biochemistry, 38, 2577–2589.

    Google Scholar 

  • Bloom, M., Reeves, L.W. and Wells, E.J. (1965) J. Chem. Phys., 42, 1615–1624.

    Google Scholar 

  • Bycroft, M., Ludvigsen, S., Fersht, A.R. and Poulsen, F.M. (1991) Biochemistry, 30, 8697–8701.

    Google Scholar 

  • Carr, P.A., Erickson, H.P. and Palmer, A.G., III (1997) Structure, 5, 949–959.

    Google Scholar 

  • Cavanagh, J., Palmer, A.G., Wright, P.E. and Rance, M. (1991) J.Magn. Reson., 91, 429–436.

    Google Scholar 

  • Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990a) J. Am. Chem. Soc., 112, 4989–4991.

    Google Scholar 

  • Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990b) Biochemistry, 29, 7387–7401.

    Google Scholar 

  • Epstein, D.M., Benkovic, S.J. and Wright, P.E. (1995) Biochemistry, 34, 11037–11048.

    Google Scholar 

  • Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.

    Google Scholar 

  • Fersht, A.R. (1993) FEBS Lett., 325, 5–16.

    Google Scholar 

  • Fersht, A.R. (1997) Curr. Opin. Struct. Biol., 7, 3–9.

    Google Scholar 

  • Fischer, M.W.F., Zeng, L., Pang, Y., Hu, W., Majumdar, A. and Zuiderweg, E.R.P. (1997) J. Am. Chem. Soc., 119, 12-629–12-642.

    Google Scholar 

  • Fitzgerald, P.C. and Hartley, R.W. (1993) Anal. Biochem., 214, 544–547.

    Google Scholar 

  • Freund, S.M., Wong, K.B. and Fersht, A.R. (1996) Proc. Natl. Acad. Sci. USA, 93, 10600–10603.

    Google Scholar 

  • Fushman, D., Weisemann, R., Thüring, H. and Rüterjans, H. (1994) J. Biomol. NMR, 4, 61–78.

    Google Scholar 

  • Fushman, D., Cahill, S. and Cowburn, D. (1997) J. Mol. Biol., 266, 173–194.

    Google Scholar 

  • Guillet, V., Lapthorn, A., Hartley, R.W. and Mauguen, Y. (1993) Structure, 1, 165–177.

    Google Scholar 

  • Hiyama, Y., Niu, C.-H., Silverton, J.V., Bavoso, A. and Torchia, D.A. (1988) J. Am. Chem. Soc., 110, 2378–2383.

    Google Scholar 

  • Hodsdon, M.E. and Cistola, D.P. (1997) Biochemistry, 36, 2278–2290.

  • Jones, D.N.M., Bycroft, M., Lubienski, M.J. and Fersht, A.R. (1993) FEBS Lett., 331, 165–172.

    Google Scholar 

  • Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972–8979.

    Google Scholar 

  • Kay, L.E. (1998) Nat. Struct. Biol., 5 (NMR Supplement), 513–517.

    Google Scholar 

  • Kim, H., Xia, D., Yu, C., Xia, J., Kachurin, A.M., Zhang, L., Yu, L. and Deisenhofer, J. (1998) Proc. Natl. Acad. Sci. USA, 95, 8026–8033.

    Google Scholar 

  • Khurana, R. and Udgaonkar, J.B. (1994) Biochemistry, 33, 106–115.

    Google Scholar 

  • Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M. and Palmer, A.G. II (1998) J. Am. Chem. Soc., 120, 7905–7915.

    Google Scholar 

  • Lee, A.L., Flynn, P.F. and Wand, A.J. (1999) J. Am. Chem. Soc., 121, 2891–2902.

    Google Scholar 

  • Lefèvre, J.-F., Dayie, K.T., Peng, J.W. and Wagner, G. (1996) Biochemistry, 35, 2674–2686.

    Google Scholar 

  • LeMaster, D.M. (1999) J. Am. Chem. Soc., 121, 1726–1742.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.

    Google Scholar 

  • Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.

    Google Scholar 

  • Lubienski, M.J., Bycroft, M., Freund, S.M.V. and Fersht, A.R. (1994) Biochemistry, 33, 8866–8877.

    Google Scholar 

  • Luginbühl, P., Pervushin, K.V., Iwai, H. and Wüthrich, K. (1997) Biochemistry, 36, 7305–7312.

    Google Scholar 

  • Malmendal, A., Evenäs, J., Forsen, S. and Akke, M. (1999) J. Mol.Biol., 293, 883–899.

    Google Scholar 

  • Mandel, A.M., Akke, M. and Palmer, A.G., III (1995) J. Mol. Biol., 246, 144–163.

    Google Scholar 

  • Marion, D., Ikura, M., Tschudin, R. and Bax, A. (1989) J. Magn.Reson., 85, 393–399.

    Google Scholar 

  • Mauguen, Y., Hartley, R.W., Dobson, G., Bricogene, G., Chothia, C. and Jack, A. (1982) Nature (London), 297, 162–164.

    Google Scholar 

  • Matouschek, A., Serrano, L. and Fersht, A.R. (1992) J. Mol. Biol., 224, 819–835.

    Google Scholar 

  • Mime, S., Tale, S., Ueda, T., Kainosho, M. and Imoto, T. (1999) J.Mol. Biol., 286, 1547–1565.

    Google Scholar 

  • Okorokov, A.L., Hartley, R.W. and Panov, K.I. (1994) Protein Express. Purif., 5, 547–552.

    Google Scholar 

  • Palmer, A.G., III, Cavanagh, J., Wright, P.E. and Rance, M. (1991) J. Magn. Reson., 93, 151–170.

    Google Scholar 

  • Palmer, A.G., III, Williams, J. and McDermott, A. (1996) J. Phys.Chem., 100, 13293–13310.

    Google Scholar 

  • Peng, J.W. and Wagner, G. (1994) Methods Enzymol., 239, 563–596.

    Google Scholar 

  • Prompers, J.J., Groenewegen, A., Hilbers, C.W. and Pepermans, H.A.M. (1999) Biochemistry, 38, 5315–5327.

    Google Scholar 

  • Sanz, J.M., Johnson, C.M. and Fersht, A.R. (1994) Biochemistry, 33, 11189–11199.

    Google Scholar 

  • Schurr, J.M., Babcock, H.P. and Fujimoto, B.S. (1994) J. Magn.Reson., B105, 211–224.

    Google Scholar 

  • Skelton, N.J., Palmer, A.G., Akke, M., Kördel, J., Rance, M. and Chazin, W.J. (1993) J. Magn. Reson., B102, 253–264.

    Google Scholar 

  • Slijper, J., Boelens, R., Davis, A.L., Konings, R.N.H., Marel, G.A. van der, Boom, J.H. van and Kaptein, R. (1997) Biochemistry, 36, 249–254.

    Google Scholar 

  • Stivers, J.T., Abeygunawardana, C. and Mildvan, A.S. (1996) Biochemistry, 35, 16036–16047.

    Google Scholar 

  • Tjandra, N., Garrett, D.S., Gronenborn, A.M., Bax, A. and Clore, G.M. (1997) Nature Struct. Biol., 4, 443–449.

    Google Scholar 

  • Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am.Chem. Soc., 117, 12562–12566.

    Google Scholar 

  • Vis, H., Vorgias, C.E., Wilson, K.S., Kaptein, R. and Boelens, R. (1998) J. Biomol. NMR, 11, 265–277.

    Google Scholar 

  • Werten, S., Wechselberger, R., Boelens, R., Vliet, P.C. van der, and Kaptein, R. (1999) J. Biol. Chem., 274, 3693–3699.

    Google Scholar 

  • Yang, D. and Kay, L.E. (1996) J. Mol. Biol., 263, 369–382.

    Google Scholar 

  • Ye, J., Mayer, K.L. and Stone, M.J. (1999) J. Biomol. NMR, 15, 115–124.

    Google Scholar 

  • Zhang, P., Dayie, K.T. and Wagner, G. (1997) J. Mol. Biol., 272, 443–455.

    Google Scholar 

  • Zheng, Z., Czaplicki, J. and Jardetzky, O. (1995) Biochemistry, 34, 5212–5223.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sahu, S.C., Bhuyan, A.K., Udgaonkar, J.B. et al. Backbone dynamics of free barnase and its complex with barstar determined by 15N NMR relaxation study. J Biomol NMR 18, 107–118 (2000). https://doi.org/10.1023/A:1008310402933

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008310402933

Navigation