Skip to main content
Log in

Theoretical Study of the TiO2 and MgO Surface Acidity and the Adsorption of Acids and Bases

  • Published:
Molecular Engineering

Abstract

We present ab-initio periodic Hartree–Fock calculations (crystal program) of small molecules on TiO2 and MgO. The adsorption of the molecules may be molecular or dissociative. This depends on their acid and basic properties in the gas phase. For the molecular adsorption, the molecules are adsorbed as bases on Ti(+IV) sites, the adsorption energies correlate with the proton affinities. The dissociations on the surface correlate with the gas phase cleavages: thus, the dissociation of MeOH leads to a preferential basic cleavage (the fragment HO– is adsorbed on a Ti+4 ion and the fragment Me+ is adsorbed on a O2– ion of the oxide). The opposite result is obtained with MeSH. Another important factor is the adsorbate–adsorbate interaction: favorable cases are a sequence of H-bonds for the hydroxyl groups resulting from the water dissociation and the mode of adsorption for the ammonium ions. Lateral interactions also force the adsorbed CO2 molecules to bend over the surface so that their mutual orientation resembles the geometry of the CO2 dimer. With respect to water adsorption, MgO appears to be a basic oxide. As experimentally observed, NH3 adsorbs preferentially on TiO2 and CO2 on MgO. However, this difference of reactivity should not be expressed in terms of acid vs. basic behaviour but in terms of hard and soft acidity. The MgO surface is a 'soft' acidic surface that reacts preferentially with the soft base, CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Noguera: Chiemie et physique des surfaces d'oxydes, Eyrolles, Paris (1995).

    Google Scholar 

  2. A. Auroux and A. Cervasini: J. Phys. Chem. 94, 6371 (1990).

    Google Scholar 

  3. A. Cervasini and A. Auroux: J. Therm. Analysis 37, 1737 (1991).

    Google Scholar 

  4. A.L. Allred and E.G. Rochow: J. Inorg. Nucl. Chem. 5, 264 (1958).

    Google Scholar 

  5. A.L. Allred: J. Inorg. Nucl. Chem. 17, 734 (1961).

    Google Scholar 

  6. R. Dovesi, C. Pisani, C. Roetti, and M. Causà: Crystal 88, Bloomington, Indiana, QCPE Program No. 577 (1988).

  7. R. Dovesi, V.R. Saunders, and C. Roetti: Crystal 92, User Documentation, University of Torino and SERC Daresbury Laboratory (1992).

  8. C. Pisani, R. Dovesi, and C. Roetti: Hartree- Fock Ab Initio Treatment of Crystalline Systems 48, Lecture Notes in Chemistry, Springer, Heidelberg (1988).

    Google Scholar 

  9. A.G. Pelmenschikov, G. Morosi, A. Gamba, S. Collucia, G. Martra, and E.A. Paukshtis: J. Phys. Chem. 100, 5011 (1996).

    Google Scholar 

  10. C.A. Scamehorn, N. M. Harrison, and M. I. McCarthy: J. Chem. Phys. 101, 1547 (1994).

    Google Scholar 

  11. A.M. Ferrari and G. Pacchioni: J. Phys. Chem. 99, 17010 (1995).

    Google Scholar 

  12. J. Goniakowki and C. Noguera: Surf. Sci. 330, 337 (1995).

    Google Scholar 

  13. U. Diebold and T.E. Madey: 'Electron Stimulated Desorption (ESD) of Ammonia on TiO2 (110): The Influence of Substrate Defect Structure' 31, in A.R. Burn E.B. Stechel and D.R. Jennison (eds.), Desorption Induced by Electron Transitions DIET V, Springer-Verlag, Berlin, Heidelberg (1993).

    Google Scholar 

  14. V. Heinrich: Rep. Prog. Phys. 48, 1481 (1985).

    Google Scholar 

  15. P.A. Cox, F.W.H. Dean, and A.A. Williams: Vacuum 33, 839 (1983).

    Google Scholar 

  16. T. Urano, T. Kanaji, and M. Kaburaji: Surf Sci. 134, 109 (1983).

    Google Scholar 

  17. M. Causà, R. Dovesi, C. Pisani, and C. Roetti: Surf. Sci. 175, 551 (1986).

    Google Scholar 

  18. V. Heinrich and R.L. Kurtz: Phys. Rev. B 22, 6280 (1981).

    Google Scholar 

  19. T. Wolfram: J. Vac. Sci. Technol. 18, 428 (1981).

    Google Scholar 

  20. M. Tsukada, H. Adachi, and C. Satoko: Prog. Surf. Sci. 14, 113 (1983).

    Google Scholar 

  21. A. Markovits, A. Fahmi, and C. Minot: J. Mol. Struct., Theochem. 371, 219 (1996).

    Google Scholar 

  22. A. Markovits, J. Ahdjoudj, and C. Minot: Surf. Sci. 365, 649 (1996).

    Google Scholar 

  23. P. Reinhardt and B.A. Hess: Phys. Rev. B 50, 12015 (1994).

    Google Scholar 

  24. A. Fahmi and C. Minot: J. Organomet. Chem. 478, 67 (1994).

    Google Scholar 

  25. P. Durand and J.C. Barthelat: Theor. Chim. Acta 38, 283 (1975).

    Google Scholar 

  26. B. Silvi, N. Fourati, R. Nada, and C.R.A. Catlow: J. Phys. Chem. Solids 52, 1005 (1991).

    Google Scholar 

  27. Y. Bouteiller, C. Mijoule, M. Nizam, J.C. Barthelat, J.P. Daudey, M. Pelissier, and B. Silvi: Mol. Phys. 65, 295 (1988).

    Google Scholar 

  28. M. Causà, R. Dovesi, C. Pisani, and C. Roetti: Phys. Rev. B 33, 1308 (1986).

    Google Scholar 

  29. R. Dovesi, R. Orlando, F. Ricca, and C. Roetti: Surf. Sci. 186, 267 (1987).

    Google Scholar 

  30. G. Pacchioni, G. Cogliandro, and P. Bagus: Int. J. Quantum Chem. 42, 1115 (1992).

    Google Scholar 

  31. G. Pacchioni: Surf. Sci. 281, 207 (1993).

    Google Scholar 

  32. M. Causà, E. Kotimin, C. Pisani, and C. Roetti: J. Phys. C/Solid State Phys. 20, 4991 (1987).

    Google Scholar 

  33. J. Ahdjoudj and C. Minot: unpublished results (1996).

  34. A. Fahmi, C. Minot, P. Fourré and P. Nortier: Surface Science 343, 261 (1995).

    Google Scholar 

  35. C.A. Scamehorn, A.C. Hess, and M.I. McCarthy: J. Chem. Phys. 99, 2786 (1994).

    Google Scholar 

  36. J. Goniakowki, S. Bouetto-Russo, and C. Noguera: Surf. Sci. 284, 315 (1993).

    Google Scholar 

  37. A. Fahmi and C. Minot: Surf. Science 304, 343 (1993).

    Google Scholar 

  38. T. Bredow and K. Jug: Surf. Sci. 398-408, 398 (1995).

    Google Scholar 

  39. J. Goniakowki and M.J. Gillan: Surf. Sci. 350, 145 (1996).

    Google Scholar 

  40. W. Langel and M. Parrinello: Phys. Rev. Lett. 73, 504 (1994).

    Google Scholar 

  41. G. Klopman: J. Am. Chem. Soc. 90, 223 (1968).

    Google Scholar 

  42. R.G. Pearson: J. Chem. Ed. 45, 581 (1968).

    Google Scholar 

  43. C. Minot, M.A. Van Hove, and J.P. Biberian: Surf. Sci. 346, 283 (1996).

    Google Scholar 

  44. C. Minot, A. Fahmi, and J. Ahdjoudj: Periodic HF Calculations of the Adsorption of Small Molecules on TiO2, Drymen, Scotland.

  45. S. Picaud, S. Briquez, A. Lakhlifi, and C. Girardet: J. Chem. Phys. in press (1995).

  46. V. Panella, J. Suzanne, P.N.M. Hoang, and C. Girardet: J. Phys. I France 4, 905 (1994).

    Google Scholar 

  47. S. Briquez, A. Lakhlifi, S. Picaud, and C. Girardet: Chem. Phys. 194, 65 (1995).

    Google Scholar 

  48. G. Pacchioni, J.M. Ricart, and F. Illas: J. Am. Chem. Soc. 116, 10152 (1994).

    Google Scholar 

  49. Y. Ferro, A. Allouche, F. Corà, C. Pisani, and C. Girardet: Surf. Sci. 325, 139 (1995).

    Google Scholar 

  50. Z. Peng and J.K.M. Merz: J. Am. Chem. Soc. 115, 9640 (1993).

    Google Scholar 

  51. J. Liang and W.N. Lipscomb: J. Am. Chem. Soc. 108, 5051 (1986).

    Google Scholar 

  52. J.-Y. Liang and W.N. Lipscomb: Int. J. Quantum Chemistry XXXVI, 299 (1989).

    Google Scholar 

  53. S. Lindskog: Zinc Enzymes, N.Y., Wiley (1983).

    Google Scholar 

  54. O. Jacob, R. Cardenas, and O. Tapia: J. Am. Chem. Soc. 112, 8692 (1990).

    Google Scholar 

  55. J.P. Perdew: in Unified Theory of Exchange and Correlation Beyond the Local Density Approximation, Nova Science, New York, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markovits, A., Ahdjoudj, J. & Minot, C. Theoretical Study of the TiO2 and MgO Surface Acidity and the Adsorption of Acids and Bases. Molecular Engineering 7, 245–261 (1997). https://doi.org/10.1023/A:1008290700873

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008290700873

Navigation