Skip to main content
Log in

A Necessary and Sufficient Condition for the Existence of Some Ternary [n, k, d] Codes Meeting the Greismer Bound

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Let k and d be any integers such that k ≥ 4 and \(\) . Then there exist two integers α and β in {0,1,2} such that \(\). The purpose of this paper is to prove that (1) in the case k ≥5 and (α,β) = (0,1), there exists a ternary \(\left[ {n,k,d} \right] \) code meeting the Griesmer bound if and only if \(3^{k - 1} - 3^{k - 2} - 2 \leqslant d \leqslant 3^{k - 1} - 3^{k - 2} \) and (2) in the case k ≥4 and (α,β) = (0,2) or (1,1), there is no ternary \(\left[ {n,k,d} \right] \) code meeting the Griesmer bound for any integers k and d and (3) in the case k ≥5 and \(d = 3^{k - 1} - 3^{\lambda + 1} - 3^{k - 2} \), there is no projective ternary \([g_3 (k,d) + 1,k,d] \) code for any integers k and λ such that 1≤λ≤k-3, where \({\text{g}}_{\text{3}} (k,d) = \upsilon _k - \upsilon _{\lambda + 2} - \upsilon _{k - 1} \) and \(\upsilon _i = (3^i - 1)/(3 - 1) \) for any integer i ≥0. In the special case k=6, it follows from (1) that there is no ternary linear code with parameters [233,6,154] , [234,6,155] or [237,6,157] which are new results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. E. Brouwer and N. J. A. Sloane, Tables of Codes, in Handbook of Coding Theory (R. Brualdi, W. C. Huffman and V. Pless, eds.), North-Holland, Amsterdam, to appear.

  2. M. van Eupen, N. Hamada and Y. Watamori, The nonexistence of ternary [50, 5, 32] codes, Designs, Codes and Cryptography, vol. 7 (1996), pp. 235–237.

    Google Scholar 

  3. M. van Eupen and R. Hill, An optimal ternary [69, 5, 45] code and related codes, Designs, Codes and Cryptography, Vol. 4 (1994) pp. 271–282.

    Google Scholar 

  4. J. H. Griesmer, A bound for error-correcting codes, IBM J. Res. Develop., Vol. 4 (1960) pp. 532–542.

    Google Scholar 

  5. N. Hamada, A characterization of some [n, k, d; q]-codes meeting the Griesmer bound using a minihyper in a finite projective geometry, Discrete Math., Vol. 116 (1993) pp. 229–268.

    Google Scholar 

  6. N. Hamada, A survey of recent work on characterization of minihypers in PG(t, q) and nonbinary linear codes meeting the Griesmer bound, J. Combin. Inform. Syst. Sci., Vol. 18 (1993) pp. 161–191.

    Google Scholar 

  7. N. Hamada and T. Helleseth, A characterization of some }2υα+1 + υγ+1, 2υα + υγ; k − 1, 3{-minihypers and some [n, k, 3k−1 − 2 · 3α − 3γ; 3]-codes (k ≥ 3, 0 ≤ α < γ < k − 1) meeting the Griesmer bound, Discrete Math., Vol. 104 (1992) pp. 67–81.

    Google Scholar 

  8. N. Hamada and T. Helleseth, A characterization of some ternary codes meeting the Griesmer bound, AMS series Contemp. Math., Vol. 168 (1994) pp. 139–150.

    Google Scholar 

  9. N. Hamada and T. Helleseth, A characterization of }3υ1 + υ4, 3υ0 + υ3; 4, 3{-minihypers and projective ternary [78, 5, 51] codes, Math. Japonica, Vol. 43 (1996), pp. 253–266.

    Google Scholar 

  10. N. Hamada, T. Helleseth and ø. Ytrehus, On the construction of [q 4 + q 2q, 5, q 4q 3 + q 2 − 2q; q]-codes meeting the Griesmer bound, Designs, Codes and Cryptography, Vol. 2 (1992) pp. 225–229.

    Google Scholar 

  11. N. Hamada, T. Helleseth and ø. Ytrehus, The nonexistence of [51, 5, 33; 3]-codes, Ars Combin., Vol. 35 (1993) pp. 25–32.

    Google Scholar 

  12. N. Hamada and Y. Watamori, The nonexistence of some ternary linear codes of dimension 6 and the bounds for n 3 (6, d), 1 ≤ d ≤ 243, Math. Japonica, Vol. 43 (1996), pp. 577–593.

    Google Scholar 

  13. N. Hamada and Y. Watamori, The nonexistence of [71, 5, 46; 3]-codes, J. Statist. Plann. Inference, vol. 52 (1996) pp. 379–394.

    Google Scholar 

  14. T. Helleseth, A characterization of codes meeting the Griesmer bound, Inform. and Control, Vol. 50 (1981) pp. 128–159.

    Google Scholar 

  15. R. Hill, Caps and codes, Discrete Math., Vol. 22 (1978) pp. 111–137.

    Google Scholar 

  16. R. Hill and D. E. Newton, Optimal ternary linear codes, Designs, Codes and Cryptography, Vol. 2 (1992) pp. 137–157.

    Google Scholar 

  17. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting Codes, Vol. 16, North-Holland and Mathematical Library, Amsterdam, (1977).

    Google Scholar 

  18. G. Solomon and J. J. Stiffler, Algebraically punctured cyclic codes, Inform. and Control, Vol. 8 (1965) pp. 170–179.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamada, N. A Necessary and Sufficient Condition for the Existence of Some Ternary [n, k, d] Codes Meeting the Greismer Bound. Designs, Codes and Cryptography 10, 41–56 (1997). https://doi.org/10.1023/A:1008288219580

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008288219580

Navigation