Skip to main content
Log in

A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We analyze a variational approach to image segmentation that is based on a strictly convex non-quadratic cost functional. The smoothness term combines a standard first-order measure for image regions with a total-variation based measure for signal transitions. Accordingly, the costs associated with “discontinuities” are given by the length of level lines and local image contrast. For real images, this provides a reasonable approximation of the variational model of Mumford and Shah that has been suggested as a generic approach to image segmentation.

The global properties of the convex variational model are favorable to applications: Uniqueness of the solution, continuous dependence of the solution on both data and parameters, consistent and efficient numerical approximation of the solution with the FEM-method.

Various global and local properties of the convex variational model are analyzed and illustrated with numerical examples. Apart from the favorable global properties, the approach is shown to provide a sound mathematical model of a useful locally adaptive smoothing process. A comparison is carried out with results of a region-growing technique related to the Mumford-Shah model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.-M. Morel and S. Solimini, Variational Methods in Image Segmentation, Birkhäuser: Boston, 1995.

    Google Scholar 

  2. D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,” Comm. Pure Appl. Math., Vol. 42, pp. 577–685, 1989.

    Google Scholar 

  3. S.R. Kulkarni, S.K. Mitter, T.J. Richardson, and J.N. Tsitsiklis, “Local versus nonlocal computation of length of digitized curves,” IEEE Trans. Patt. Anal. Mach. Intell., Vol. 16, No.7, pp. 711–718, 1994.

    Google Scholar 

  4. G. Koepfler, C. Lopez, and J. Morel, “A multiscale algorithm for image segmentation by variational method,” SIAM J. Numer. Anal., Vol. 31, No.1, pp. 282–299, 1994.

    Google Scholar 

  5. D. Geiger and A. Yuille, “A common framework for image segmentation,” Int. J. of Comp. Vision, Vol. 6, No.3, pp. 227–243, 1991.

    Google Scholar 

  6. S.Z. Li, Markov Random Field Modeling in Computer Vision, Springer-Verlag: Tokyo, 1995.

    Google Scholar 

  7. A. Blake and A. Zisserman, Visual Reconstruction, MIT Press, 1987.

  8. D. Geiger and F. Girosi, “Parallel and deterministic algorithms from mrfs: Surface reconstruction and integration,” in First Europ. Conf. on Comp. Vision, O. Faugeras (Ed.), Springer Verlag, Lect. Notes. Comp. Sci., Antibes, Vol. 427, pp. 89–98, France, 1990.

  9. C. Schnörr and R. Sprengel, “A nonlinear regularization approach to early vision,” Biol. Cybernetics, Vol. 72, pp. 141–149, 1994.

    Google Scholar 

  10. R.L. Stevenson, B.E. Schmitz, and E.J. Delp, “Discontinuity preserving regularization of inverse visual problems,” IEEE Trans. Systems, Man and Cyb., Vol. 24, No.3, pp. 455–469, 1994.

    Google Scholar 

  11. S.Z. Li, Y.H. Huang, and J. Fu, “Convex energy functionals in the da model,” in Proc. IEEE Int. Conf. Image Processing, 1995.

  12. C. Schnörr, “Unique reconstruction of piecewise smooth images by minimizing strictly convex non-quadratic functionals,” J. of Math. Imag. Vision, Vol. 4, pp. 189–198, 1994.

    Google Scholar 

  13. C. Schnörr, “Segmentation of visual motion by minimizing convex non-quadratic functionals,” in 12th Int. Conf. on Pattern Recognition, Jerusalem, Israel, 1994.

  14. C. Schnörr, R. Sprengel, and B. Neumann, “A variational approach to the design of early vision algorithms,” Computing Suppl., Vol. 11, pp. 149–165, 1996.

    Google Scholar 

  15. C. Schnörr, “Convex variational segmentation of multi-channel images,” in Proc. 12th Int. Conf. on Analysis and Optimization of Systems: Images, Wavelets and PDE's, Paris, Springer-Verlag, 1996.

    Google Scholar 

  16. W.P. Ziemer, Weakly Differentiable Functions, Springer: New York, 1989.

    Google Scholar 

  17. T. Poggio, V. Torre, and C. Koch, “Computational vision and regularization theory,” Nature, Vol. 317, pp. 314–319, 1985.

    Google Scholar 

  18. P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publ. Comp.: Amsterdam, 1978.

    Google Scholar 

  19. D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983.

  20. R. Sprengel, Entwurf und Analyse nichtlinearer Diffusionsverfahren für die Bildverarbeitung, Volume 123 of Dissertationen zur Künstlichen Intelligenz.infix, Sankt Augustin, 1996.

  21. J.P. Aubin, Applied Functional Analysis, Wiley & Sons, 1979.

  22. L.I. Rudin, S. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algorithms,” Physica D, Vol. 60, pp. 259–268, 1992.

    Google Scholar 

  23. J.P. Aubin, Approximation of Elliptic Boundary-Value Problems, Wiley & Sons: New York, 1972.

    Google Scholar 

  24. V.A. Morozov, Methods for Solving Incorrectly Posed Problems, Springer-Verlag: New York, 1984.

    Google Scholar 

  25. J. Baumeister, Stable Solution of Inverse Problems, F. Vieweg & Sohn: Braunschweig/Wiesbaden, Germany, 1987.

    Google Scholar 

  26. E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press: Princeton, New Jersey, 1970.

    Google Scholar 

  27. R. Sprengel, C. Schnörr, and B. Neumann, “Detection of visual data transitions in nonlinear parameter space,” in Mustererkennung 1994, W.G. Kropatsch and H. Bischof (Ed.), Informatik Xpress: Technische Universität Wien, Vol. 5, pp. 315–323, 1994.

    Google Scholar 

  28. W. Förstner and E. Gülch, “A fast operator for detection and precise localization of distinct points, corners and circular features,” in Proc. Intercommission Conf. on Fast Processing of Photogrammetric Data, Interlaken, Switzerland 1987, pp. 281–305.

  29. W. Förstner, “A framework for low level feature extraction,” in Computer Vision—ECCV’ 94, J.O. Eklundh (Ed.), Springer-Verlag, Lect. Notes. Comp. Sci., 1994, Vol. 801, pp. 61–70.

  30. K. Rohr, “Recognizing corners by fitting parametric models,” Int. J. of Comp. Vision, Vol. 9, No.3, pp. 213–230, 1992.

    Google Scholar 

  31. T. Lindeberg, “Junction detection with automatic selection of detection scales and localization scales,” in Proc. 1st Int. Conf. Imag. Proc., Austin Texas, 1994, pp. 924–928.

  32. K. Michalski, “Implementation und analyse eines ansatzes zur bildsegmentation nach mumford und shah,” Semesterwork, Universität Hamburg, AB KOGS, Mai 1996.

  33. Y.G. Leclerc, “Constructing simple stable descriptions for image partitioning,” Int. J. of Comp. Vision, Vol. 3, No.1, pp. 73–102, 1989.

    Google Scholar 

  34. K. Deimling, Nonlinear Functional Analysis, Springer-Verlag: Berlin, 1985.

    Google Scholar 

  35. M.S. Berger, Nonlinearity Functional Analysis, Academic Press: New York, 1977.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schnörr, C. A Study of a Convex Variational Diffusion Approach for Image Segmentation and Feature Extraction. Journal of Mathematical Imaging and Vision 8, 271–292 (1998). https://doi.org/10.1023/A:1008278718907

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008278718907

Navigation