Skip to main content
Log in

Decoding Affine Variety Codes Using Gröbner Bases

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We define a class of codes that we call affine variety codes. These codes are obtained by evaluating functions in the coordinate ring of an affine variety on all the Fq-rational points of the variety. We show that one can, at least in theory, decode these codes up to half the true minimum distance by using the theory of Gröbner bases. We extend results of A. B. Cooper and of X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. W. Adams and P. Loustaunau, An Introduction to Gröbner Bases, American Mathematical Society (1994).

  2. D. Bayer and M. Stillman, Macaulay: A system for computation in algebraic geometry and commutative algebra.

  3. M. de Boer and R. Pellikaan, Gröbner bases for error-correcting codes, EIDMA/Galois Minicourse on Computer Algebra, Eindhoven University of Techonology, September 27-30 (1995).

  4. X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Use of Gröbner bases to decode binary cyclic codes up to the true minimum distance IEEE Transactions on Information Theory, Vol. 40, No. 5 (1995) pp. 1654–1661.

    Google Scholar 

  5. X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, General principles for the algebraic decoding of cyclic codes, IEEE Transactions on Information Theory, Vol. 40, No.5 (1995) pp. 1661–1663.

    Google Scholar 

  6. X. Chen, I. S. Reed, T. Helleseth, and T. K. Truong, Algebraic decoding of cyclic codes: A polynomial ideal point of view, Finite Fields: Theory, Applications, and Algorithms (Las Vegas, NV, 1993), Contemp. Math. 168, Amer. Math. Soc., Providence (1994) pp.15-22.

    Google Scholar 

  7. A. B. Cooper, Toward a new method of decoding algebraic codes using Gröbner bases, Transactions of the 10th Army Conference on Applied Mathematics and Computing, West Point, NY (1992), pp. 1–11.

  8. D. Cox, J. Little, and D. O'Shea: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, Springer-Verlag, New York (1992).

    Google Scholar 

  9. P. Delsarte, J. M. Goethals, and F. J. MacWilliams, On generalized Reed-Muller codes and their relatives, Information and Control, Vol. 16 (1970) pp. 403–442.

    Google Scholar 

  10. G. L. Feng and T. R. N. Rao, Improved geometric Goppa codes, part I: basic theory, IEEE Transactions on Information Theory, Vol. 41, No.6 (1995) pp. 1678–1693.

    Google Scholar 

  11. T. Høholdt, J. H. van Lint, and R. Pellikaan, Algebraic geometry codes, preprint (1996).

  12. H. Kredel, MAS(computer program), Universität Passau, (1993).

  13. J. H. van Lint and G. van der Geer, Introduction to Coding Theory and Algebraic Geometry, Birkhäuser Verlag, Basel, (1988).

    Google Scholar 

  14. P. Loustaunau and E. V. York, On the decoding of cyclic codes using Gröbner bases, preprint.

  15. H. M. Möller and B. Buchberger, The construction of multivariate polynomials with preassigned zeros, Computer Algebra. EUROCAM' 82, European Computer Algebra Conference, Marseille, France, Lecture Notes in Computer Science, Springer-Verlag, Berlin-New York (1982) pp. 24-31.

    Google Scholar 

  16. R. Pellikaan, B. Z. Shen, and G. J. M. van Wee, Which linear codes are algebraic-geometric? IEEE Transactions on Information Theory, Vol. 37, No.3 (1991) pp. 583-602.

    Google Scholar 

  17. C. Rong and T. Helleseth, Use characteristic sets to decode cyclic codes up to actual minimum distance, Finite Fields and Applications, London Mathematical Society Lecture Notes 233, Cambridge University Press (1996).

  18. C. Rong and T. Helleseth, On methods of using Gröbner bases to decode cyclic codes up to actual minimum distance, preprint.

  19. A. Seidenberg, Constructions in algebra, Transactions of the American Mathematical Society, Vol. 197 (1974) pp. 273–313.

    Google Scholar 

  20. K. Saints and C. Heegard, Algebraic-geometric codes and multidimensional cyclic codes: a unified theory and algorithms for decoding using Gröbner bases, IEEE Transactions on Information Theory, Vol. 41, No.6, (1995) pp. 1733-1751.

    Google Scholar 

  21. K. Yang and P. V. Kumar, On the true minimum distance of Hermitian codes, Coding Theory and Algebraic Geometry: Proceedings of AGCT-3, Luminy, France, June 1991(H. Stichtenoth and M. A. Tsfasman, eds.), Lecture Notes in Mathematics, Springer-Verlag, New York (1992) pp. 99-107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fitzgerald, J., Lax, R.F. Decoding Affine Variety Codes Using Gröbner Bases. Designs, Codes and Cryptography 13, 147–158 (1998). https://doi.org/10.1023/A:1008274212057

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008274212057

Navigation