Skip to main content
Log in

Three Systems for Threshold Generation of Authenticators

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

An authentication system with shared generation of authenticators is a system in which construction of an authentic codeword requires collaboration of an authorised group of transmitters. We propose three systems for threshold generation of authenticators that provide unconditional security and in two cases protection extends over multiple message transmissions. We describe the constructions and prove their security properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colin Boyd, Digital multisignatures, in Cryptography and Coding, Clarendon Press (1989), pages 241-246.

  2. Julian Brown, A quantum revolution for computing, New Scientist, (September 1994) pp. 21-24.

  3. B. den Boer, A simple and key-economical unconditional authentication scheme, Journal of Computer Security, Vol. 2 (1993) pp. 65-71.

    Google Scholar 

  4. Y. Desmedt, Society and group oriented cryptography: A new concept, Advances in Cryptology-Crypto' 87, Lecture Notes in Computer Science, Springer-Verlag, Vol. 293 (1988) pp. 120-127.

    Google Scholar 

  5. Yvo Desmedt and Yair Frankel, Shared generation of authenticators and signatures, Advances in Cryptology-Crypto' 91, Lecture Notes in Computer Science, Springer-Verlag, Vol. 576 (1991) pp. 457-469

    Google Scholar 

  6. J.W. Greene, E. D. Karnin, and M. E. Hellman, On secret sharing systems, IEEE Transaction on Information Theory, Vol. 29 (1983) pp. 35-41.

    MathSciNet  Google Scholar 

  7. Lein Harn and Shoubao Yang, Group-oriented undeniable signature schemes without the assistance of a mutually trusted party, Advances in Cryptology-Auscrypt' 92, Lecture Notes in Computer Science, Springer-Verlag, Vol. 718 (1993) pp. 133-142.

    Google Scholar 

  8. Tizonelih Hwang, Cryptosystems for group oriented cryptography, Advances in Cryptology-Eurocrypt'90, Lecture Notes in Computer Science, Springer-Verlag, Vol. 473 (1991) pp. 352-360.

    MATH  Google Scholar 

  9. H. Woll and M. Tompa, How to share a secret with cheaters, Journal of Cryptology, Vol. 1 (1988) pp. 133-138.

    MathSciNet  Google Scholar 

  10. J. MacWilliams and N. J. Sloane, The Theory of Error Correcting Codes, North Holland Publishing Company (1978).

  11. Jean-Jaques Quisquater, Marijke De Soete and Klaus Vedde, A signature with shared verification scheme, Advances in Cryptology-Crypto' 89, Lecture Notes in Computer Science, Springer-Verlag, Vol. 435 (1987) pp. 252-262.

    Google Scholar 

  12. Kazuo Ohta and Tasuaki Okamoto, A digital multisignature scheme based on the Fiat-Shamir scheme, Advances in Cryptology-Asiacrypt' 91, Lecture Notes in Computer Science, Springer-Verlag, Vol. 739 (1993) pp. 139-148.

    Google Scholar 

  13. L. Tombak and R. Safavi-Naini, Combinatorial characterization of A-codes with r-fold security, Advances in Cryptology-Asiacrypt' 94, Lecture Notes in Computer Science, Springer-Verlag, Vol. 917 (1995) pp. 211-223.

    MathSciNet  Google Scholar 

  14. Steven Roman, Coding and Information Theory, Springer-Verlag (1992).

  15. Adi Shamir, How to share a secret, Communication of the ACM, Vol. 22 (1979) pp. 612-613.

    Article  MATH  MathSciNet  Google Scholar 

  16. G. Kabatianskii, T. Johansson, and B. Smeets, On the relation between A-codes and codes correcting independent errors, Advances in Cryptology-Eurocrypt' 93, Lecture Notes in Computer Science, Springer-Verlag, Vol. 765 (1994) pp. 1-11.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safavi-Naini, R. Three Systems for Threshold Generation of Authenticators. Designs, Codes and Cryptography 13, 299–312 (1998). https://doi.org/10.1023/A:1008258110029

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008258110029

Navigation