Skip to main content
Log in

Oral reduced B-nicotinamide adenine dinucleotide (NADH) affects blood pressure, lipid peroxidation, and lipid profile in hypertensive rats (SHR)

  • Published:
Geriatric Nephrology and Urology

Abstract

A gradual increase in blood pressure (BP), often attaining hypertensive levels, is common during aging - “age-related hypertension.” Therefore, means to prevent or ameliorate this elevated BP safely are important. Although oral B-nicotinamide adenine dinucleotide (NADH), a natural coenzyme, is used principally to treat various neurologic disorders, we wished to investigate whether this agent had the same potential to lower BP and benefit the cardiovascular system as does coenzyme Q10, a similar-type agent. As a first approximation, spontaneously hypertensive rats (SHR) were used to determine effects of oral NADH. In a blinded, placebo-controlled study, ten rats received placebo; and ten, NADH for ten weeks. Systolic BP was measured by tail plethysmography. Blood was collected terminally, and chemistries were performed by routine methodologies. Thiobarbituric acid reactive species (TBARS) (an estimate of lipid peroxidation / free radical formation) was measured in renal and hepatic tissues. The following was noted: water and food intake were comparable, and the steady weight gain of young SHR were similar in the placebo and NADH groups. Although systolic BP did not differ between the two groups over the first month, it decreased and stayed markedly lower for the remainder of study in SHR receiving oral NADH. At the end of 60 days, SBP in NADH-treated SHR was 184 mm Hg ± 2.8 (SEM) compared to 201 mm Hg ± 2.1 (SEM) in control SHR (p < 0.001). No significant differences were seen in blood levels of glucose, insulin, triglyceride, and HDL levels but NADH intake lowered total cholesterol (p < 0.002) and LDL (p < 0.02). Renal TBARS were also significantly lower in SHR receiving NADH (P < 0.001). Accordingly, supplementation with the natural coenzyme NADH theoretically could prove to be useful in preventing age-related increases in BP and, thus, various cardiovascular maladies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White A, Handier P, Smith EL. Biological oxidation in Principles of Biochemistry. New York: McGraw-Hill, 1964, p. 320.

    Google Scholar 

  2. Vrecko K, Birkmayer JGD, Krainz J. Stimulation of dopamine biosynthesis in cultured PC 12 phaeochromocytoma cells by the co-enzyme nicotinamide adenine dinucleotide (NADH). J Neur Trans 1993; 5: 147-156.

    Article  CAS  Google Scholar 

  3. Birkmayer JGD, Birkmayer W. The co-enzyme nicotinamide adenine dinucleotide (NADH) as biological antidepressant agent. Experience with 205 patients. New Trends in Neuropharmacology 1991; 5: 15-23.

    Google Scholar 

  4. Birkmayer JGD. Nicotinamide adenine dinucleotide (NADH) the new therapeutic approach for improving dementia of Alzheimer type. Ann Clin Lab Sci 1989; 19: 38-43.

    PubMed  CAS  Google Scholar 

  5. Birkmayer W, Birkmayer JBD, Vrecko C, Paletta B, Reschenhofer E, Ott E. Nicotinamide Adenine Dinucleotide (NAD'H) as medication for Parkinson's Disease. Experience with 415 patients. New Trends in Clin Neuropharmacol 1990; IV: 7-24.

    Google Scholar 

  6. Romero-Alvira D, Roche E. High blood pressure, oxygen radicals and antioxidants: etiological relationships. Med Hypotheses 1996; 46: 414-420.

    Article  PubMed  CAS  Google Scholar 

  7. Greenburg S, Frishman WH: Co-enzyme Q10: A new drug for cardiovascular disease. J Clin Pharmacol 1990; 30: 596-608.

    Google Scholar 

  8. Okamoto K, Aoki K. Development of a strain of spontaneously hypertensive rat. Jap Cirn J 1963; 27: 282-293.

    CAS  Google Scholar 

  9. Preuss HG, Gondal JA, Bustos E, Bushehri N, Lieberman S, Bryden NA, Polansky MM, Anderson RA. Effect of chromium and guar on sugar-induced hypertension in rats. Clin Neph 1995; 44: 170-177.

    CAS  Google Scholar 

  10. Preuss MB, Preuss HG. Effects of sucrose on the blood pressure of various strains of Wistar rats. Lab Invest 1980; 43: 101-107.

    PubMed  CAS  Google Scholar 

  11. Bunag RD. Validation in awake rats of a tail-cuff method measuring systolic pressure. J Appl Physiol 1973; 34: 279-282.

    PubMed  CAS  Google Scholar 

  12. Loft JA, Turner K. Evaluation of Trinder's glucose oxidase method for measuring glucose in serum and urine. Clin Chem 1975; 21: 1754-1760.

    Google Scholar 

  13. Albano JDM., Ekins RP, Maritz G. A sensitive, precise radioimmunoassay of serum insulin relying on charcoal separation of bound and free hormone moieties. Acta Endocrinol 1972; 70: 487-509.

    PubMed  CAS  Google Scholar 

  14. Buege JA, Hunt SD. Microsomal lipid peroxidation. Meth Enzymol 1978; LII: 302-306.

    Article  Google Scholar 

  15. Draper HH, Squires EJ, Mahmoodj H, Wu J, Agarwal S, Hadley M. A comparative evaluation of thiobarbituric acid methods for the determination of malondialdehyde in biological materials. Free Rad Biol Med 1993; 15: 353-363.

    Article  PubMed  CAS  Google Scholar 

  16. Diplock AT. Antioxidant nutrients and disease prevention: An overview. Am J Clin Nutr 1991; 53: 189s-193s.

    PubMed  CAS  Google Scholar 

  17. Solonen JT, Solonen R, Ihanainen M, Parviainen M, Sepparnen R, Kantola M, Seppanen K, Rauramaa R. Blood pressure, dietary fats, and antioxidants. Am J Clin Nutr 1988; 48: 1226-1232.

    Google Scholar 

  18. Salonen JT. Dietary fats, antioxidants, and blood pressure. Ann Med 1991; 23: 295-298.

    PubMed  CAS  Google Scholar 

  19. Jacques PF. Effects of Vitamin C on high density lipoprotein cholesterol and blood pressure. Int J Vit of Nutr Res 1992; 11: 139-144.

    CAS  Google Scholar 

  20. Ghosh SK, Ekpo EB, Shah IU, Girling AJ, Jenkins C, Sinclair AJ. A double-blind, placebo-controlled parallel trial of Vitamin C treatment in elderly patients with hypertension. Gerontology 1994; 40: 268-272.

    Article  PubMed  CAS  Google Scholar 

  21. Paolisso G, Balbi V, Volpe C, Varricchio G, Gambardella, A, Saccomanno F, Ammendola S, Varricchio M, D'orifrio F. Metabolic benefits deriving from chronic Vitamin C supplementation in aged non-insulin dependent diabetics. J Am Coll Nutr 1995; 14: 387-392.

    PubMed  CAS  Google Scholar 

  22. Yoshioka M, Matsushita T, Churman Y. Inverse association of serum ascorbic acid level and blood pressure or rate of hypertension in male adults aged 30-39 years. Int J Vitam Nutr Res 1984; 54: 343-347.

    PubMed  CAS  Google Scholar 

  23. Choi ESK, Jacques PF, Dallal GE, Jacobs RA. Correlation of blood pressure with plasma ascorbic acid. Nutr Res 1991; 11: 1377-1382.

    Article  Google Scholar 

  24. Jacques PF. A cross-sectional study of Vitamin C intake and blood pressure in the elderly. Intern J Vit and Nutr Res 1992; 62: 252-255.

    CAS  Google Scholar 

  25. Oster O, Prellwitz W. Selenium and cardiovascular disease. Biol Trace Elem Res 1990; 24: 91-103.

    PubMed  CAS  Google Scholar 

  26. Galley HF, Thornton J, Howdle PD, Walker BE, Webster NR. Combination oral antioxidant supplementation reduces blood pressure. Clin Sci 1997; 92: 361-365.

    PubMed  CAS  Google Scholar 

  27. Vanhoutte PM. Endothelium and control of vascular function: State of the Art Lecture. Hypertension 1989; 13: 658-667.

    PubMed  CAS  Google Scholar 

  28. Efstratopoulos AD, Vacua SO. Effects of antioxidants on acute blood pressure response to smoking in normotensives and hypertensives. J Hyper 1993; 11(Suppl. 5): S112-S113.

    CAS  Google Scholar 

  29. Waggoner LO. Endothelium-derived nitric oxide: actions and properties. FASEB J 1989; 3: 31-36.

    Google Scholar 

  30. Dan S, Kumar KIN. Nitric oxide: its identity and role in blood pressure control. Life Sci 1995; 57: 1547-1556.

    Article  Google Scholar 

  31. Dominiczak AD, Bohr DO. Nitric oxide and its putative role in hypertension. Hypertension 1995; 25: 1202-1211.

    PubMed  CAS  Google Scholar 

  32. Auch-Schwelk W, Katusic Z, Vanity PM: Contractions to oxygen-derived free radicals are augmented in aorta of the spontaneously hypertensive rat. 1995; 162: 439-445.

    Google Scholar 

  33. van Acker SABE, Tromp MNJL, Haenen GRMM, van der Vijgh WJF, Bast A. Flavenoids as scavengers of nitric oxide Radical. Biochem Biophys Res Com 1995; 214: 755-759.

    Article  PubMed  CAS  Google Scholar 

  34. Swislocki AL, Hoffman BB. Reaven GM. Insulin resistance, glucose intolerance and hyperinsulinemia in patients with hypertension. Am J Hyper 1989; 2: 419-423.

    CAS  Google Scholar 

  35. Reaven GM. Role of insulin resistance in human disease (Banting Lecture 1988). Diabetes 1988; 37: 1595-1607.

    PubMed  CAS  Google Scholar 

  36. Ferrannini E, Haffner SM, Stern MP. Essential hypertension: an insulin-resistant state. J Cardiovasc Pharmacol 1990; 15(Suppl. 5): 518-525.

    Google Scholar 

  37. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosdlerotic cardiovascular disease. Diabetes Care 1991; 14: 173-194.

    PubMed  CAS  Google Scholar 

  38. Sowers JR, Levy J, Zemel MB. Hypertension and diabetes. Med Clin North Am 1988; 72: 1399-1414.

    PubMed  CAS  Google Scholar 

  39. Ceriello A, Giuglan D, Quatrato A, Lefebri PJ: Anti-oxidants show an anti-hy-pertensive effect in diabetic and hypertensive subjects. Clin Sci 1991; 81: 739-742.

    PubMed  CAS  Google Scholar 

  40. Moreau P, Yamaguchi N, de Champlain J: Increased activity in the nitric oxide pathway during chronic euglycemic hyperinsutinemia in the rat. J Hyper 1993; 11(Suppl 5): S270-S271.

    CAS  Google Scholar 

  41. Meunier M-T, Villie F, Jonadet M, Bastide J, Bastide P: Inhibition of angiotensin I converting enzyme by flavonolic compounds: in vitro and in vivo studies. Planta Med 1987; 53: 12-15.

    Article  PubMed  CAS  Google Scholar 

  42. Wagner H, Elbl G, Lotter H, Guinea M. Evaluation of natural products as inhibitors of angiotensin I-converting enzyme (ACE). Pharm Pharmacol Lett 1991; 1: 15-18.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bushri, N., Jarrell, T., Lieberman, S. et al. Oral reduced B-nicotinamide adenine dinucleotide (NADH) affects blood pressure, lipid peroxidation, and lipid profile in hypertensive rats (SHR). Geriatric Nephrology and Urology 8, 95–100 (1998). https://doi.org/10.1023/A:1008242900153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008242900153

Navigation