Skip to main content
Log in

Electrochemical concepts and techniques in the study of stainless steel ennoblement

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Electrochemical theory and technique used to investigate microbially influenced corrosion is discussed with a focus on methods used to demonstrate the manganic-oxide mechanism of stainless steel Ennoblement. The concept of mixed potential and its relationship to the current-voltage behavior of stainless steel is developed. This concept is used to interpret microbially induced changes in corrosion potential, polarization behavior, surface-oxide abundance, and the redox environment at submerged metal surfaces. Microelectrode, capacitance, and coulometric methods are described that can be used to discriminate electrochemical effects caused by changes in solution properties from those caused by mineral deposition at the metal surface. The variety of electrochemical, wet-chemical, microbiological, and surface analytical techniques used to demonstrate the effect of biomineralized manganese dioxide on the electrochemical behavior of stainless steel are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anson FC, Ni CL, & Saveant JM (1985) Electrocatalysis at redox polymer electrodes with separation of the catalytic and charge propagation roles. Reduction of O2 to H2O2 as catalyzed by cobalt(II) tetrakis(4-N-methyl pyridyl)porphyrin. J. Am. Chem. Soc. 107: 3442- 3450

    Google Scholar 

  • Bard AJ & Faulkner LR (1980) Electrochemical methods, fundamentals and applications. John Wiley & Sons, New York

    Google Scholar 

  • Bitton G, Koopman B, Jung K, & Voiland G (1993) Modification of the standard epifluorescence microscopic method for total bacterial counts in environmental samples. Wat. Res. 27: 1109- 1112

    Google Scholar 

  • Brewer P & Spencer D (1971) Colorimetric determination of manganese in anoxic waters. Limnol. Oceangr. 16: 107- 110

    Google Scholar 

  • Crolet JL (1991) From biology and corrosion to biocorrosion. In: Sequeira CAC & Tiller AK (Eds) Proceedings of the 2nd EFC Workshop, (pp 50- 60). The Institute of Materials, London

    Google Scholar 

  • Dexter S (1995) Effect of biofilms on marine corrosion of passive alloys. In: Gaylarde C & Videla H (Eds) Bioextraction and Biodeterioration of Metals (pp 129- 168) Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Dickinson W, Caccavo F J, & Lewandowski Z (1996a) The ennoblement of stainless steel by manganic oxide biofouling. Corr. Sci. 38: 1407- 1422

    Google Scholar 

  • Dickinson W, Caccavo FJ, Olesen B, & Lewandowski Z (1996b) Ennoblement of stainless steel by the manganesedepositing bacterium Leptothrix discophora. Appl. Environ. Microbiol. 63: 2502- 2506

    Google Scholar 

  • Dickinson W, Lewandowski Z, & Geer R (1996c) Evidence for surface changes during the ennoblement of type 316L stainless steel: dissolved oxidant and capacitance measurements. Corrosion 52: 910- 920

    Google Scholar 

  • Duquette D & Ricker R (1986) Electrochemical Aspects of Microbially Induced Corrosion, In: Biologically Induced Corrosion (pp 121- 130) NACE Houston

    Google Scholar 

  • Emerson D & Ghiorse W (1992) Isolation, cultural maintenance, and taxonomy of a sheathforming strain of Leptothrix discophora and characterization of manganeseoxidizing activity associated with the sheath. Appl. Environm. Microbiol. 58: 4001- 4010

    Google Scholar 

  • Emerson D & Ghiorse W (1993) Ultrastructure and chemical composition of the sheath of Leptothrix discophora SP-6. J. Bacteriol. 175: 7808- 7818

    Google Scholar 

  • Evans U & Taylor C (1972) Mechanism of atmospheric rusting. Corr. Sci. 12: 227- 246

    Google Scholar 

  • Ferreira MGS & Dawson JL (1985) Electrochemical studies of the passive film on 316 stainless steel in chloride media. J. Electrochem. Soc. 132: 760- 765

    Google Scholar 

  • Glenn JK & Gold MH (1985) Purification and characterization of an extracellular Mn(II)dependent peroxidase from the lignindegrading basidiomycete. Arch. Biochem. Biophys. 242: 329- 341

    Google Scholar 

  • Gounot A-M (1994) Microbial oxidation and reduction of manganese: Consequences in groundwater and applications. FEMS Microbiol. Rev. 14: 339- 350

    Google Scholar 

  • Greenwood NN & Earnshaw A (1990) Chemistry of the Elements. Pergamon Press, New York

    Google Scholar 

  • Hanert HH (1981) The genus Siderocapsa (and other iron-or manganeseoxidizing eubacteria. In: Starr M, Truper H, Balows A, & Schlegel (Eds) The Prokaryotes, a Handbook on Habitats, Isolation and Identification of Bacteria Vol 3 (pp 1049- 1059) SpringerVerlag, New York

    Google Scholar 

  • Herring A & Ravitz S (1965) Rate of dissolution ofmanganese dioxide in sulfurous acid. Trans. Soc. Mining Engineer September: 191- 196

  • Heuesler K (1990) Growth and dissolution of passivating films. Corr. Sci. 31: 597- 606

    Google Scholar 

  • Hobbie J, Daley R, & Jasper S (1977) Use of nucleopore filters for counting bacteria by fluorescence microscopy. Appl. Environm. Microbiol. 33: 1225- 1228

    Google Scholar 

  • Holthe R, Bardal E, & Gartland P (1989) Time dependence of cathodic properties of materials in seawater. Mater Perform 28(June): 16- 23

  • Irhzo A, Segui Y, Bui N, & Dabosi F (1986) On the conduction mechanisms of passive films on molybdenum-containing stainless steel. Corrosion 12: 141- 147

    Google Scholar 

  • Jones DA(1992) Principles and Prevention of Corrosion. Macmillan Publishing Company, New York

  • Jovancicevic V & Bockris JOM (1986) The mechanism of oxygen reduction on iron in neutral solutions. J. Electrochem. Soc. 133: 1797- 1807

    Google Scholar 

  • Kessick M, Vuceta J, & Morgan J (1972) Spectrometric determination of oxidized manganese with leuco crystal violet. Environm. Sci. Tech. 6: 642- 644

    Google Scholar 

  • Lovley D & Phillips E (1988) Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl. Environm. Microbiol. 54: 1472- 1480

    Google Scholar 

  • Mulder E (1989) Genus Leptothrix Kutzing, 1843 In: Staley J (Ed) Bergey's Manual of Systematic Bacteriology, Vol 3 (pp 1998- 2003) Williams and Wilkins, Baltimore

    Google Scholar 

  • Nagaoka T, Saka T, Ogura K, & Yoshino T (1986) Oxygen reduction at electrochemically treated glassy carbon electrodes. Anal. Chem. 58: 1953- 1955

    Google Scholar 

  • Nagayama M-i & Cohen M (1961) The anodic oxidation of iron in a neutral solution I. The nature and composition of the passive film. J. Electrochem. Soc. 109: 781- 790

    Google Scholar 

  • Okada H, Hosoi Y, & Naito H (1970) Electrochemical reduction of thick rust layers formed on steel surfaces. Corrosion 26: 429- 430

    Google Scholar 

  • Ramasubramanian N, Preocanin N, & Davidson RD (1990) Analysis of passive films on stainless steel by cyclic voltammetry and Auger spectroscopy. J. Electrochem. Soc. 132: 793- 798

    Google Scholar 

  • Spratt HGJ, Siekmann E, & Hodson R (1994) Microbial manganese oxidation in saltmarsh surface sediments using a leuco crystal violet manganese oxide detection technique. Estuar, Coastal, Shelf Science 38: 91- 112

    Google Scholar 

  • Srinivasan S, Chizmadzhev YA, Bockris JOM, Conway BE, & Yeager E (1985) Bioelectrochemistry. Comprehensive treatise of electrochemistry, Vol 10 (pp 541) Plenum Press, New York

    Google Scholar 

  • Stockbridge C, Sewell P, & Cohen M (1961) Cathodic behavior of iron single crystals and the oxides Fe3O4, Gamma-Fe2O3, and Alpha-Fe2O3. J. Electrochem. Soc. 108: 928- 933

    Google Scholar 

  • Stumm W & Lee F (1961) Oxygenation of ferrous iron. Industr. Engineer. Chem. 53: 143- 146

    Google Scholar 

  • Su Y, Huwana T, & Chen S-M (1990) Electrocatalysis of oxygen reduction by watersoluble iron porphyrins. J. Electroanal. Chem. 288: 177- 195

    Google Scholar 

  • Tomashov ND & Chernova GP (1967) Passivity and Protection of Metals Against Corrosion. Plenum Press, New York

    Google Scholar 

  • Tuovinen O, Hirsch P, & Zavarzin G (1989) Family "siderocapsaceae' Pribram, 1929. In: Staley J (Ed) Bergey's Manual of Systematic Bacteriology, Vol 3 (pp 1874- 1878) Williams and Wilkins, Baltimore

    Google Scholar 

  • Vago E & Calvo E (1992) Electrocatalysis of oxygen reduction at Fe3O4 oxide electrodes in alkaline solutions. J. Electroanal. Chem. 339: 41- 67

    Google Scholar 

  • Vago ER, Calvo EJ, & Stratmann M (1994) Electrocatalysis of oxygen reduction at welldefined iron oxide electrodes. Electrochim. Acta. 39: 1655- 1659

    Google Scholar 

  • Yamashoji S, Ikeda T, & Yamashoji K (1991) Extracellular generation of active oxygen species catalyzed by exogenous menadione in yeast cell suspension. Biochim. Biophys. Acta. 1059: 99- 105

    Google Scholar 

  • Zecevic S, Drazic DM, & Gojkovic S (1991) Oxygen reduction on iron-V. Processes in boric acid-borate buffer solutions in the 7.4- 9.8 pH range. Corr. Sci. 32: 563- 576

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dickinson, W.H., Lewandowski, Z. Electrochemical concepts and techniques in the study of stainless steel ennoblement. Biodegradation 9, 11–21 (1998). https://doi.org/10.1023/A:1008223930984

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008223930984

Navigation