Skip to main content
Log in

The Chebyshev Hyperplane Optimization Problem

  • Published:
Journal of Global Optimization Aims and scope Submit manuscript

Abstract

We consider the following problem. Given a finite set of pointsy j in\(\mathbb{R}^n \) we want to determine a hyperplane H such that the maximum Euclidean distance betweenH and the pointsy j is minimized. This problem(CHOP) is a non-convex optimization problem with a special structure. Forexample, all local minima can be shown to be strongly unique. We present agenericity analysis of the problem. Two different global optimizationapproaches are considered for solving (CHOP). The first is a Lipschitzoptimization method; the other a cutting plane method for concaveoptimization. The local structure of the problem is elucidated by analysingthe relation between (CHOP) and certain associated linear optimizationproblems. We report on numerical experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Faigle, W. Kern and M. Streng, Note on the computational complexity of j-radii of polytopes in ℝn, Mathematical Programming73, 1–5, 1996.

    Google Scholar 

  2. P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite dimensional normed spaces, Discrete Computational Geometry7, 255–280, 1992.

    Google Scholar 

  3. R. Hettich and P. Zencke, Numerische Methoden der Approximation und Semi-infiniten Optimierung, B.G. Teubner, 1982.

  4. R. Horst and H. Tuy, Global Optimization, Springer Verlag, 1990.

  5. C.G. Gibson, K. Wirthmüller, A.A. Du Plessis and E.J.N. Looijenga, Topological Stability of Smooth Mappings, Lecture Notes in Mathematics, Vol. 522, Springer Verlag, Berlin, 1976.

    Google Scholar 

  6. F. John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays: Courant Anniversary Volume, Interscience publishers, New York, 187–204, 1948.

    Google Scholar 

  7. H.W. Jung, Ueber die kleinste kugel, die eine räumliche Figur einschliesst, Journal für die reine und angewandte Mathematik123, 241–257, 1901.

    Google Scholar 

  8. P. Jonker, M. Streng and F. Twilt, Chebyshev Line Approximation: a Sensitivity Analysis, in Parametric Optimization and Related Topics III, J. Guddat, H. Th. Jongen, B. Kummer and F. Nočička (eds.) (Approximation and Optimization), Peter Lang Verlag, Frankfurt am Main, 303–322, 1993.

    Google Scholar 

  9. D. Klatte, On quantitative stability for non-linear minima, Control and Cybernetics23(1/2), 183–200, 1994.

    Google Scholar 

  10. H. Späth, Orthogonal least squares fitting with linear manifolds, Numerische Mathematik86, 441–445, 1986.

    Google Scholar 

  11. G. Still and M. Streng, Optimality Conditions in Smooth Nonlinear Optimization, Journal of Optimization Theory and Applications90(3), 483–516, 1996.

    Google Scholar 

  12. M. Streng, Chebyshev Approximation of Finite Sets by Curves and Linear Manifolds, dissertation, University of Twente, 1993.

  13. M. Streng and W. Wetterling, Chebyshev Approximation of a Point Set by a Straight Line, Constructive Approximation10, 187–196, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Still, G., Streng, M. The Chebyshev Hyperplane Optimization Problem. Journal of Global Optimization 11, 361–376 (1997). https://doi.org/10.1023/A:1008220431204

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008220431204

Navigation