Skip to main content
Log in

A General Method for Estimating Dynamic Parameters of Spatial Mechanisms

  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Dynamic equations of motion require a large number of parameters for each element of the system. These can include for each part their mass, location of center of mass, moment of inertia, spring stiffnesses and damping coefficients. This paper presents a technique for estimating these parameters in spatial mechanisms using any joint type, based on measurements of displacements, velocities and accelerations and of external forces and torques, for the purpose of building accurate multibody models of mechanical systems. A form of the equations of spatial motion is derived, which is linear in the dynamic parameters and based on multibody simulation code methodologies. Singular value decomposition is used to find the ‘essential parameter set’, and ‘minimum parameter set’. It is shown that a simulation of a four-bar mechanism (with spherical, universal, and revolute joints) and based on the estimated parameters gives accurate response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ADAMS User's Manual, Mechanical Dynamics Inc., 2301 Commonwealth Boulevard, Ann Arbor, MI, 1995.

  2. DADS User's Manual, Computer Aided Design Software Inc., Oakdale, IA, 1995.

  3. Rubin, C. A., The Student Edition of Working Model Version 2.0, Addison-Wesley, MA, 1995.

    Google Scholar 

  4. Mukerjee, A. and Ballard, D. H., ‘Self-calibration in robot manipulators’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1985, pp. 1051-1057.

    Google Scholar 

  5. An, C. H., Atkeson, C. G., and Hollerbach, J. M., ‘Estimation of inertial parameters of rigid body links of manipulators’, in Proceedings of the IEEE Conference on Decision and Control, IEEE Control Systems Society, IEEE, New York, 1985, pp. 1754-1760.

    Google Scholar 

  6. An, C. H., Atkeson, C. G., and Hollerbach, J. M., Model-Based Control of Robot Manipulators, MIT Press, Cambridge, MA, 1988.

    Google Scholar 

  7. Khosla, P. K. and Kanade, T., ‘Parameter identification of robot dynamics’, in Proceedings of the IEEE Conference on Decision and Control, IEEE Computer Society, IEEE, New York, 1985, pp. 1754-1760.

    Google Scholar 

  8. Gautier, M., ‘Numerical calculation of the base inertial parameters of robots’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1990, pp. 1020-1025.

    Google Scholar 

  9. Gautier, M. and Vandanjon, P.O., ‘Reduction of robot base parameters’, in Proceedings 3rd ECC, Rome, A. Isidori, S. Bittanti, E. Mosca, A. De Luca, M. D. Di Benedetto, and G. Orido (eds.), Eur. Union Control. Assoc., Rome, Italy, 1995, pp. 2368-2373.

    Google Scholar 

  10. Sheu, S. Y. and Walker, M. W., ‘Identifying the independent inertial parameter space of robot manipulators’, International Journal of Robotics Research 10, 1991, 668-683.

    Google Scholar 

  11. Gautier, M. and Khalil, W., ‘A direct determination of minimum inertial parameters of robots’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1988, pp. 1682-1687.

    Google Scholar 

  12. Gautier, M. and Khalil, W., ‘A direct calculation of minimum set of inertial parameters of serial robots’, IEEE Transactions on Robotics and Automation 6, 1990, 368-373.

    Google Scholar 

  13. Gautier, M., Bennis, F., and Khalil, W., ‘The use of generalized links to determine the minimum inertial parameters of robots’, Journal of Robotic Systems 7, 1990, 225-242.

    Google Scholar 

  14. Bennis, F., Khalil, W., and Gautier, M., ‘Calculation of base inertial parameters of closed-loop robots’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1992, pp. 370-375.

    Google Scholar 

  15. Mayeda, H., Yoshida, K., and Osuka, K., ‘Base parameters of manipulator dynamics models’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1988, pp. 1367-1372.

    Google Scholar 

  16. Mayeda, H., Yoshida, K., and Osuka, K., ‘Base parameters of dynamics models for manipulators with rotational and translational joints’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1989, pp. 1523-1528.

    Google Scholar 

  17. Mayeda, H., Yoshida, K., and Osuka, K., ‘Base parameters of manipulator dynamics models’, IEEE Transactions on Robotics and Automation 6, 1990, 312-321.

    Google Scholar 

  18. Mayeda, H. and Ohashi, K., ‘Base parameters of dynamic models of general open loop kinematic chains’, in Proceedings International Symposium on Robotics Research, H. Miura and S. Arimoto (eds.), MIT Press, Cambridge, MA, 1990, pp. 271–278.

    Google Scholar 

  19. Olsen, H. B. and Bekey, G. A., ‘Identification of parameters in models with rotary joints’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1985, pp. 1045-1049.

    Google Scholar 

  20. Canudas, de Wit C. and Aubin, A., ‘Robot parameter identification via sequential hybrid estimation algorithm’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Control Systems Society, IEEE, New York, 1991, pp. 952-957.

    Google Scholar 

  21. Ghodoussi, M. and Nakamura, Y., ‘Principal base parameters of open and closed kinematic chains’, in Proceedings of the IEEE International Conference on Robotics and Automation, IEEE Computer Society, IEEE, New York, 1991, pp. 84-88.

    Google Scholar 

  22. Mottershead, J. E. and Friswell, M. I., ‘Model updating in structural dynamics: A survey’, Journal of Sound and Vibration 167(2), 1993, 347-375.

    Google Scholar 

  23. Haug, E. J., Computer Aided Kinematics and Dynamics of Mechanical Systems. Vol. 1, Basic Methods, Allyn and Bacon, Boston, MA, 1989.

    Google Scholar 

  24. Noble, B. and Daniel, J. W., Applied Linear Algebra, Prentice-Hall, Englewood Cliffs, NJ, 1977.

    Google Scholar 

  25. Klema, V. C. and Laub, A. J., ‘The singular value decomposition: Its computation and some applications’, IEEE Transactions on Automation and Control 25, 1980, 164-176.

    Google Scholar 

  26. Strang, G., Linear Algebra and Its Applications, Academic Press, New York, 1976.

    Google Scholar 

  27. Matlab User's Manual, The MathWorks, Inc., 24 Prime Park Way, Natick, MA, 1995.

  28. Wang, D. and Beale, D. G., ‘A criteria to determine the number of minimum inertia parameters of mechanisms’, Mechanism and Machine Theory (in review).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shome, S.S., Beale, D.G. & Wang, D. A General Method for Estimating Dynamic Parameters of Spatial Mechanisms. Nonlinear Dynamics 16, 349–368 (1998). https://doi.org/10.1023/A:1008218130224

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008218130224

Navigation