Skip to main content
Log in

ESCAPE OF PARTICLES ORBITING ASTEROIDS IN THE PRESENCE OF RADIATION PRESSURE THROUGH SEPARATRIX SPLITTING

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

We study the motion of grains in orbit around asteroids under the influence of radiation pressure originating in the flux of solar photons. Of interest is the possibility of initially bound grains becoming unbound and leaving the vicinity of the asteroid. The analysis extends the two-degree-of-freedom results of (Dankowicz, 1995) to three-degree-of-freedom motions. In particular, we use a Melnikov-type approach for finding transversal points of intersection between high-dimensional perturbed stable and unstable manifolds. As a consequence, the system is shown to be nonintegrable and the resulting homoclinic tangles are suggested as a means for phase space transport along resonance layers, so-called Arnol'd diffusion. We discuss the implications of the diffusion on the depletion of asteroid-bound particles and attempt to estimate the diffusion rate for physical comparison. For particular values of physical parameters the time scale is shown to be on the order of hundreds of orbital revolutions of the asteroid around the sun.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arnol'd, V. I.: 1988, Dynamical Systems III, Springer-Verlag, Berlin.

    Google Scholar 

  • Arnol'd, V. I.: 1989, Mathematical Methods of Classical Mechanics, 2nd Edition, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Bernard, P.: 1996, Perturbation d'un Hamiltonien Partiellement Hyperbolique, C.R. Acad. Sci. Paris, t. 323, Sèrie I, pages 189–194.

  • Burns, J. A. and Lamy, P. L. and Soter, S.: 1979, Radiation Forces on Small Particles in the Solar System, Icarus, 40:1–48.

    Article  ADS  Google Scholar 

  • Byrd, P. F. and Friedman, M. D.: 1971, Handbook of Elliptic Integrals for Scientists and Engineers, Springer-Verlag, New York.

    MATH  Google Scholar 

  • Chamberlain, J. W. and Bishop, J.: 1993, Radiation Pressure Dynamics in Planetary Exospheres. II. Closed Solutions for the Evolution of Orbital Elements, Icarus, 106:419–427.

    Article  ADS  Google Scholar 

  • Chierchia, L. and Gallavotti, G.: 1994 Drift and Diffusion in Phase Space, Ann. H. Poincarè (Physique Theorique), 60(1):1–144.

    MATH  MathSciNet  Google Scholar 

  • Dankowicz, H.:1994, Some Special Orbits in the Two-body Problem with Radiation Pressure, Celes. Mech., 58:353–370.

    Article  MathSciNet  ADS  Google Scholar 

  • Dankowicz, H.: 1995, The Two-Body Problem with Radiation Pressure in a Rotating Reference Frame, Celes. Mech, 61(3):287–313.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Dankowicz, H.: 1996, Analytical Expressions for Stable and Unstable Manifolds in Higher Degree of Freedom Hamiltonian Systems, International Journal of Bifurcation and Chaos, 6(11):1997–2013.

    Article  MathSciNet  Google Scholar 

  • Deprit, A.: 1983, Dynamics of Orbiting Dust under Radiation Pressure. In A. Berger, editor, The Big Bang and Georges Lemaître, pages 151–180. D. Reidel Publishing Company, Dordrecht.

    Google Scholar 

  • Graff, S. M.: 1974, On the Conservation of Hyperbolic Invariant Tori for Hamiltonian Systems. J. Diff. Eqs.,15:1–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Haller, G.: 1995, Diffusion at Intersecting Resonances in Hamiltonian Systems. Physics Letters A, 200:34–42.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Hamilton, D. P. and Burns, J. A.: 1992, Orbital Stability Zones about Asteroids. II. The Destabilizing Effects of Eccentric Orbits and of Solar Radiation, Icarus, 96:43–64.

    Article  ADS  Google Scholar 

  • Holmes, P. J. and Marsden, J. E.: 1982, Melnikov's Method and Arnold Diffusion for Perturbations of Integrable Hamiltonian Systems, J. Math. Phys., 23(4):669–675.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • Lichtenberg, A. J. & Lieberman, M. A.: 1982, Regular and Stochastic Motion. Springer-Verlag, New York.

    Google Scholar 

  • Lochak, P.: 1996, Arnold Diffusion: a Compendium of Remarks and Questions. In Hamiltonian Systems with Three or More Degrees of Freedom, Dordrecht, Holland. NATO Adv. Sci. Inst. C Math. Phys. Sci., Kluwer.

    Google Scholar 

  • Mignard, F.: 1982, Radiation Pressure and Dust Particle Dynamics, Icarus, 49:347–366.

    Article  ADS  Google Scholar 

  • Mignard, F.: 1984, Effects of Radiation Forces on Dust Particles in Planetary Rings. In R. Greenberg and A. Brahic, editors, Planetary Rings, pages 333–366. The University of Arizona Press, Tucson, Arizona.

    Google Scholar 

  • Moser, J.: 1973, Stable and Random Motions in Dynamical Systems. Princeton University Press.

  • NSSDC.: 1996, Asteroids and Comets. http//nssdc.gsfc.nasa.gov/planetary/planets/asteroidpage. html.

  • Robinson, C.: 1988, Horseshoes for Autonomous Hamiltonian Systems using the Melnikov Integral. Ergod. Th. & Dynam. Sys, 8:395–409.

    Article  MATH  Google Scholar 

  • Shu, F. H.: 1984, Waves in Planetary Rings. In R. Greenberg and A. Brahic, editors, Planetary Rings, pages 513–561. The University of Arizona Press, Tucson, Arizona.

    Google Scholar 

  • Stiefel, E. and Scheifele, G.:, Linear and Regular Celestial Mechanics. Springer-Verlag, Berlin-Heidelberg.

  • Treshev, D. V.: 1994, Hyperbolic Tori and Asymptotic Surfaces in Hamiltonian Systems. Russian J. Math. Phys., 2(1):93–110.

    MATH  MathSciNet  Google Scholar 

  • Wiggins, S.: 1988, Global Bifurcations and Chaos. Analytical Methods. Springer-Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

DANKOWICZ, H. ESCAPE OF PARTICLES ORBITING ASTEROIDS IN THE PRESENCE OF RADIATION PRESSURE THROUGH SEPARATRIX SPLITTING. Celestial Mechanics and Dynamical Astronomy 67, 63–85 (1997). https://doi.org/10.1023/A:1008201916186

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008201916186

Navigation