Skip to main content
Log in

Refinement of modelled structures by knowledge-based energy profiles and secondary structure prediction: Application to the human procarboxypeptidase A2

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Knowledge-based energy profiles combined with secondary structure prediction have been applied to molecular modelling refinement. To check the procedure, three different models of human procarboxypeptidase A2 (hPCPA2) have been built using the 3D structures of procarboxypeptidase A1 (pPCPA1) and bovine procarboxypeptidase A (bPCPA) as templates. The results of the refinement can be tested against the X-ray structure of hPCPA2 which has been recently determined. Regions miss-modelled in the activation segment of hPCPA2 were detected by means of pseudo-energies using Prosa II and modified afterwards according to the secondary structure prediction. Moreover, models obtained by automated methods as COMPOSER, MODELLER and distance restraints have also been compared, where it was found possible to find out the best model by means of pseudo-energies. Two general conclusions can be elicited from this work: (1) on a given set of putative models it is possible to distinguish among them the one closest to the crystallographic structure, and (2) within a given structure it is possible to find by means of pseudo-energies those regions that have been defectively modelled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Warme, P.K., Momany, F.A., Rumball, S.V., Tuttle, R.W. and Scheraga, H.A., Biochemistry, 13 (1974) 768.

    Google Scholar 

  2. Browne, W.J., North, A.C.T., Phillips, D.C., Brew, K., Vanaman, T.C. and Hill, R.C., J. Mol. Biol., 42 (1969) 63.

    Google Scholar 

  3. Unger, R., Harel, D., Wherland, S. and Sussman, J.L. (1989) Proteins, 5 (1989) 355.

    Google Scholar 

  4. Blundell, T.L., Sibanda, B.L., Sternberg, M.J. and Thornton, J.M., Nature, 326 (1987) 347.

    Google Scholar 

  5. Blundell, T.L., Barlow, B., Sibanda, B.L., Thornton, J.M., Taylor, W.R., Tickle, I.J., Sternberg, M.J., Pitts, J.E., Haneef, I. and Hemmings, A.M., Phil. Trans. Roy. Soc. Lond., A317 (1986) 333.

    Google Scholar 

  6. Blundell, T.L. and Sternberg, M.J., Trends Biotechnol., 3 (1985) 228.

    Google Scholar 

  7. Srinivasan, S., March, C.J. and Sudarsanam, S., Protein Sci., 2 (1993) 227.

    Google Scholar 

  8. Havel, T.F. and Snow, M.E., J. Mol. Biol., 217 (1991) 1.

  9. Sali, A., Overington, J.P., Johnson, M.S. and Blundell, T.L., Trends Biochem. Sci., 15 (1990) 235.

    Google Scholar 

  10. Sánchez, R. and Sali, A., Curr. Opin. Struct. Biol., 7 (1997) 206.

    Google Scholar 

  11. Godzik, A. and Skolnick, J., J. Mol. Biol., 227 (1992) 227.

    Google Scholar 

  12. Lütthy, R., Bowie, J.U. and Eisernberg, D., Nature, 356 (1992) 83.

    Google Scholar 

  13. Sippl, M.J. and Weitckus, S., Proteins, 13 (1992) 258.

    Google Scholar 

  14. Sippl, M.J., Proteins, 17 (1993) 355.

    Google Scholar 

  15. Topham, C.M., Thomas, P., Overington, J., Johnson, M.S., Eisenmenger, F. and Blundell, T.L., Biochem. Soc. Symp., 57 (1990) 1.

    Google Scholar 

  16. Sali, A. and Blundell, T.L., J. Mol. Biol., 234 (1993) 779.

    Google Scholar 

  17. Fasman, G.D., Prediction of Protein Structure and the Principles of Protein Conformations, Plenum Press, New York, NY, 1998.

    Google Scholar 

  18. King, R.D., Saqi, M., Sayle, R. and Sternberg, M.J., Comput. Appl. Biosci., 13 (1997) 473.

    Google Scholar 

  19. Clotet, J., Cedano, E. and Querol, E., Comput. Appl. Biosci., 10 (1994) 495.

    Google Scholar 

  20. Rost, B., Sander, C. and Schneider, R., Comput. Appl. Biosci., 10 (1994) 53.

    Google Scholar 

  21. Rost, B. and Sander, C., J. Mol. Biol., 232 (1993) 584.

    Google Scholar 

  22. Catasus, L., Vendrell, J., Aviles, F.X., Carreira, S., Puigserver, A. and Billeter, M., J. Biol. Chem., 270 (1995) 6651.

    Google Scholar 

  23. García-Sáez, I., Reverter, D., Vendrell, J., Aviles, F.X. and Coll, M., EMBO J., 16 (1997) 6906.

    Google Scholar 

  24. Avilés, F.X., Vendrell, J., Guasch, A., Coll, M. and Huber, R., Eur. J. Biochem., 211 (1993) 381.

    Google Scholar 

  25. Pascual, R., Burgos, F.J., Salva, M., Soriano, F., Mendez, E. and Aviles, F.X., Eur. J. Biochem., 179 (1989) 609.

    Google Scholar 

  26. Coll, M., Guasch, A., Aviles, F.X. and Huber, R., EMBO J., 10 (1991) 1.

    Google Scholar 

  27. Guasch, A., Coll, M., Aviles, F.X. and Huber, R., J. Mol. Biol., 224 (1992) 141.

    Google Scholar 

  28. Aloy, P., Catasus, L., Villegas, V., Reverter, D., Vendrell, J. and Avilés, F.X., Biol. Chem., 379 (1998) 149.

    Google Scholar 

  29. Higgins, D.G. and Sharp, P.M., Comput. Appl. Biosci., 5 (1989) 151.

    Google Scholar 

  30. Fenger, D.F. and Doolittle, R.F., J. Mol. Evol., 25 (1987) 251.

    Google Scholar 

  31. Sutcliffe, M.J., Haneef, I., Carney, D. and Blundell, T.L., Protein Eng., 1 (1987) 377.

    Google Scholar 

  32. Sippl, M.J., J. Mol. Biol., 213 (1990) 859.

    Google Scholar 

  33. Roussell, A., Inisan, A.G. and Knoops-Mouthy, E., TURBO FRODO (version 5.0a) Manual, Technopole de Chateaux-Gombert, Marseille (1994).

    Google Scholar 

  34. Gomis-Rüth, F.X., Gómez-Ortiz, M., Vendrell, J., Ventura, S., Bode,W., Huber, R. and Avilés, F.X., J.Mol. Biol., 269 (1997) 861.

    Google Scholar 

  35. Oliva, B., Bates, P., Querol, E., Avilés, F.X. and Sternberg, M.J., J. Mol. Biol., 279 (1998) 1193.

    Google Scholar 

  36. Oliva, B., Bates, P., Querol, E., Avilés, F.X. and Sternberg, M.J., J. Mol. Biol., 266 (1997) 814.

    Google Scholar 

  37. Rufino, S.D., Donate, L.E., Canard, L.H.J. and Blundell, T.L., J. Mol. Biol., 267 (1997) 352.

    Google Scholar 

  38. Reverter, D., Villegas, V., Ventura, S., Vendrell, J. and Avilés, F.X., J. Biol. Chem., 273 (1998) 3535.

    Google Scholar 

  39. Mosimann, S., Meleshko, R. and James, M.N., Proteins Struct. Funct. Genet., 23 (1995) 301.

    Google Scholar 

  40. Güntert, P., Braun, W. and Wüthrich, K., J. Mol. Biol., 217 (1991) 517.

    Google Scholar 

  41. Rost, B. and Sander, C., In Bohr, H. and Brunak, S. (Eds), Protein Structure by Distance Analysis, IOS Press, Amsterdam, 1994, pp. 257–276.

    Google Scholar 

  42. Rost, B., Proteins Struct. Funct. Genet. Supplement 1 (1997) 192.

    Google Scholar 

  43. Aurora, R. and Rose, G.D., Protein Sci., 7 (1998) 21.

    Google Scholar 

  44. Negrete, J.A., Viñuales, Y. and Palau, J., Protein Sci., 7 (1998) 1368.

    Google Scholar 

  45. Villegas, V., Viguera, A.R., Avilés, F.X. and Serrano, L., Folding Design, 1 (1995) 29.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aloy, P., Mas, J.M., Martí-Renom, M.A. et al. Refinement of modelled structures by knowledge-based energy profiles and secondary structure prediction: Application to the human procarboxypeptidase A2. J Comput Aided Mol Des 14, 83–92 (2000). https://doi.org/10.1023/A:1008197831529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008197831529

Navigation