Skip to main content
Log in

Voltammetric Probing of Molecular Assemblies of Ubiquinone-10 at the Air–Water Interfaces

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The redox properties of ubiquinone 10 (UQ10) placed at the air–water interface were studied using the horizontal touching method with a thin mercury film (TMFE) working electrode and cyclic voltammetry. Changes of pH of the subphase affected the formal potential of the ubiquinone/ubiquinol system exhibiting the participation of protons in the overall reduction of UQ10. The protonation of the semiquinone transition product was found to be the rate determining step. This explains the dependence of the rate constant value on pH. The highest values of rate constants were found at pH over 13. Under these conditions the mechanism of the process is different. The concentration of protons is small, and the availability of the counter ions (i.e., K+) becomes crucial for the kinetics of reduction. Their role is to neutralize the negative charge of the redox group following its reduction. The logarithm of rate constants was found to decrease linearly with the increase of surface concentration of ubiquinone. This reflects the influence of intermolecular interactions in the monolayer on the kinetics of the electrode process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Chazotte and C. R. Hackenbrock: J. Biol. Chem. 264, 4978 (1989).

    Google Scholar 

  2. S. E. Boesch and R. A. Wheeler: J. Phys. Chem. A 101, 5799 (1997).

    Google Scholar 

  3. F. L. O'Brien and J. W. Oliver: Anal. Chem. 41, 1810 (1969).

    Google Scholar 

  4. L. E. Morrison, J. E. Schelhorn, T. M. Cotton, C. L. Bering, and P. A. Loach: in B. L. Trumpower (ed.), Function of Quinones in Energy Conserving Systems, Academic Press, New York (1982), p. 35.

    Google Scholar 

  5. K. Takamura, A. Mori, and F. Kusu: Bioelectrochem. Bioenerg. 9, 499 (1982).

    Google Scholar 

  6. O. S. Ksenzhek, S. A. Petrova, and M. V. Kolodyazhny: Bioelectrochem. Bioenerg. 9, 167 (1982).

    Google Scholar 

  7. R. S. Schrebler, A. Arratia, S. Sanchez, M. Haun, and N. Duran: Bioelectrochem. Bioenerg. 23, 81 (1990).

    Google Scholar 

  8. K. Takehara and Y. Ide: Bioelectrochem. Bioenerg. 26, 297 (1991).

    Google Scholar 

  9. R. Bilewicz: Polish J. Chem. 67, 1695 (1993).

    Google Scholar 

  10. J. M. Laval and M. Majda: Thin Solid Films 244, 836 (1994).

    Google Scholar 

  11. K. Takehara, H. Takemura, Y. Ide, and S. Okayama: J. Electroanal. Chem. 308, 345 (1991).

    Google Scholar 

  12. Z. Stojek and Z. Kublik: J. Electroanal. Chem. 60, 349 (1975).

    Google Scholar 

  13. M. Donten and Z. Kublik: J. Electroanal. Chem. 196, 275 (1985).

    Google Scholar 

  14. I. Langmuir and V. Schaefer: J. Am. Chem. Soc. 60, 1351 (1938).

    Google Scholar 

  15. M. Fujihira and T. Araki: Chem. Lett. 921 (1986).

  16. X. Zhang and A. J. Bard: J. Am. Chem. Soc. 111, 8098 (1989).

    Google Scholar 

  17. K. Odashima, M. Kotato, M. Sugawara, and Y. Umezawa: Anal. Chem. 65, 927 (1993).

    Google Scholar 

  18. H. Daifuku, K. Aoki, K. Tokuda, and H. Matsuda: J. Electroanal. Chem. 183, 1 (1985).

    Google Scholar 

  19. G. J. Gordillo and D. J. Schiffrin: J. Chem. Soc. Faraday Trans. 90, 1913 (1994).

    Google Scholar 

  20. E. Laviron: J. Electroanal. Chem. 101, 19 (1979).

    Google Scholar 

  21. M. R. Moncelli, L. Becucci, A. Nelson, and R. Guidelli: Biophys. J. 70, 2716 (1996).

    Google Scholar 

  22. E. Laviron: J. Electroanal. Chem. 52, 395 (1974).

    Google Scholar 

  23. A. P. Brown and F. C. Anson: Anal. Chem. 49, 1589 (1977).

    Google Scholar 

  24. C. E. D. Chidsey, C. R. Bertozzi, T. M. Putvinski, and A. M. Mujsce: J. Am. Chem. Soc. 112, 4301 (1990).

    Google Scholar 

  25. S. E. Creager and G. K. Rowe: Anal. Chim. Acta 246, 233 (1991).

    Google Scholar 

  26. T. Nagaoka, N. Nishii, K. Fujii, and K. Ogura: J. Electranal. Chem. 322, 383 (1992).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sek, S., Bilewicz, R. Voltammetric Probing of Molecular Assemblies of Ubiquinone-10 at the Air–Water Interfaces. Journal of Inclusion Phenomena 35, 55–62 (1999). https://doi.org/10.1023/A:1008194314304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008194314304

Navigation