Skip to main content
Log in

Spectral representation of neutral landscapes

  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Pattern in ecological landscapes is often the result of different processes operating at different scales. Neutral landscape models were introduced in landscape ecology to differentiate patterns that are the result of simple random processes from patterns that arise from more complex ecological processes. Recent studies have used increasingly complex neutral models that incorporate contagion and other constraints on random patterns, as well as using neutral landscapes as input to spatial simulation models. Here, I consider a common mathematical framework based on spectral transforms that represents all neutral landscape models in terms of sets of spectral basis functions. Fractal and multi-fractal models are considered, as well as models with multiple scaling regions and anisotropy. All of the models considered are shown to be variations on a basic theme: a scaling relation between frequency and amplitude of spectral components. Two example landscapes examined showed long-range correlations (distances up to 1000 km) consistent with fractal scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allain, C. and Cloitre, M. 1991. Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A44: 3552-3557.

    Google Scholar 

  • Arneodo, A., Grasseau, G. and Holschneider, M. 1988. Wavelet transform of multi-fractals. Phys. Rev. Lett. 61: 2281–2284.

    Google Scholar 

  • Barnsley, M. F. 1988. Fractal Everywhere. Academic Press, Boston.

    Google Scholar 

  • Bradshaw, G. A. and McIntosh, B. A. 1994. Detecting climate-induced patterns using wavelet analysis. Environ. Poll. 83: 135–142.

    Google Scholar 

  • Bradshaw, G. A. and Spies, T. A. 1992. Characterizaing canopy gap structure in forests using wavelet analysis. J. Ecol. 80: 205–215.

    Google Scholar 

  • Burrough, P. A. 1983a. Multiscale sources of spatial variation in soil. I. the application of fractal conepts to nested levels of soil variation. Soil Sci. 34: 577–597.

    Google Scholar 

  • Burrough, P. A. 1983b. Multiscale sources of spatial variation in soil. II. a non-Brownian fractal model and its application in soil survey. Soil Sci. 34: 599–620.

    Google Scholar 

  • Cressie, N. A. C. 1993. Statistics for Spatial Data. John Wiley & Sons, Inc., New York, revised edition.

    Google Scholar 

  • Dale, M. R. T. and Mah, M. 1998. The use of wavelets for spatial pattern analysis in ecology. J. Veg. Sci. 9: 805–814.

    Google Scholar 

  • Daubechies, I. 1992. Ten Lectures On Wavelets. CBMS-NSF Regional Conference Series in Applied Mathematics. Society for Industrial and Applied Mathematics, Philadelphia.

    Google Scholar 

  • Dutilleul, P. 1998. Incorporating scale in ecological experiments: Data analysis. In Ecological Scale: Theory and Applications Edited by D. L. Peterson and V. T. Parker, pp. 387–425 Columbia University Press, New York.

    Google Scholar 

  • Evans, D. L., Zhu, Z. and Winterberger, K. 1993. Mapping forest distributions with AVHRR data. World Res. Rev. 5: 66–71.

    Google Scholar 

  • Feder, H. J. S. and Feder, J. 1991. Experiments and simulations modeling earthquakes, In Spontaneous Formation of Space-Time Structures and Criticality. Edited by T. Riste and D. Sherrington, pp. 107–111. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Feder, J. 1988. Fractals. Plenum Press, New York.

    Google Scholar 

  • Gardner, R. H. and O'Neill, R. V. 1991. Pattern, process and predictability: The use of neutral models for landscape analysis In Quantitative Methods in Landscape Ecology. The Analysis and Interpretation of Landscape Heterogeneity. Edited by M. G. Turner and R. H. Gardner, pp. 289–307. Springer-Verlag, New York.

    Google Scholar 

  • Gardner, R. H., Milne, B. T., O'Neill, R. V. and Turner, M. G 1987. Neutral models for the analysis of broad-scale landscape patterns. Landscape Ecol. 1: 19–28.

    Google Scholar 

  • Gardner, R. H., O'Neill, R. V., Turner, M. G. and Dale, V. H. 1989. Quantifying scale-dependent effects of animal movements with simple percolation models. Landscape Ecol. 3: 217–227.

    Google Scholar 

  • Gardner, R. H., Turner, M. G., O'Neill, R. V. and Lavorel, S 1992. Simulation of the scale-dependent effects of landscape boundaries on species persistence and dispersal. In The Role of Landscape Boundaries in the Management and Restoration of Changing Environments. Edited by M. M. Holland, P. G. Risser and R. J. Naiman. pp. 76–89. Chapman and Hall, New York.

    Google Scholar 

  • Geller, R. J., Jackson, D. D., Kagan, Y. Y. and Mulargia, F. 1997 Earthquakes cannot be predicted. Science 275: 1616–1617.

    Google Scholar 

  • Goldenfeld, N. 1992. Lectures on Phase Transitions and the RenorTnalization Group. Addison-Wesley, New York.

    Google Scholar 

  • Gustafson, E. J. 1998. Quantifying landscape spatial pattern: What is the state of the art? Ecosystems 1: 143–156.

    Google Scholar 

  • Hastings, H. M. and Suginara, G. 1993. Fractals: A User's Guide for the Natural Sciences. Oxford University Press, Oxford.

    Google Scholar 

  • Hochberg, M. E. and van Baalen, M. 1998. Antagonistic coevolution over productivity gradients. Am. Nat. 152: 62O–634.

    Google Scholar 

  • Holling, C. S. 1992. Cross-scale morphology, geometry and dynamics of ecosystems. Ecol. Monogr. 62: 447–502.

    Google Scholar 

  • Keitt, T. H. and Johnson, A. R. 1995. Spatial heterogeneity and anomalous kinetics: Emergent patterns in diffusion limited predatory-prey interactions. J. Theor. Biol. 172: 127–139.

    Google Scholar 

  • Krummel, J. R., Gardner, R. H., Sugihara, G. and O'Neill, R. V 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–384.

    Google Scholar 

  • Lavorel, S., Gardner, R. H. and O'Neill, R. V. 1995. Disperal of annual plants in hierarchically structured landscapes. Landscape Ecol. 10: 277–289.

    Google Scholar 

  • Malamud, B. D., Morein, G. C. and Turcotte, D. L. 1998. Forest fires: An example of self-organized critical behavior. Science 281: 1840–1842.

    Google Scholar 

  • Mandelbrot, B. 1982. The Fractal Geometry of Nature. Freeman, New York.

    Google Scholar 

  • Milne, B. T. 1992. Spatial aggregation and neutral models in fractal landscapes. Am. Nat. 139: 32–57.

    Google Scholar 

  • Milne, B. T., Johnson, A. R., Keitt, T. H., Hatfield, C. A., David, J and Hraber, P. T. 1996. Detection of critical densities associated with piñon-juniper woodland ecotones. Ecology 77: 805–821.

    Google Scholar 

  • Moloney, K. A. and Levin, S. A. 1996. The effects of disturbance architecture on landscape-level population-dynamics. Ecology 77: 375–394.

    Google Scholar 

  • Muzy, J. F., Bacry, E. and Arneodo, A. 1991. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Phys. Rev. Lett. 67: 3515–3518.

    Google Scholar 

  • Muzy, J. F., Bacry, E. and Arneodo, A. 1993. Multifractal formalism for fractal signals: The structure-function approach versus the wavelet-transform modulus-maxima method. Phys. Rev. E47: 875–884.

    Google Scholar 

  • Olami, Z., Feder, H. J. S. and Christensen, K. 1992. Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes. Phys. Rev. Lett. 68: 1244–1247.

    Google Scholar 

  • O'Neill, R. V., Gardner, R. H. and Turner, M. G. 1992a. A hierarchical neutral model for landscape analysis. Landscape Ecol. 7: 55–61.

    Google Scholar 

  • O'Neill, R. V., Gardner, R. H., Turner, M. G. and Romme, W. H. 1992b. Epidemiology theory and disturbance spread on landscapes. Landscape Ecol. 7: 19–26.

    Google Scholar 

  • Ott, E. 1993. Chaos in Dynamical Systems. Cambridge University Press, Cambridge.

    Google Scholar 

  • Palmer, M.W. 1988. Fractal geometry–a tool for describing spatial patterns of plant-communities. Vegetatio 75: 91–102.

    Google Scholar 

  • Palmer, M. W. 1992. The coexistence of species in fractal landscapes. Am. Nat. 139: 375–97.

    Google Scholar 

  • Peitgen, H. and Saupe, D. 1988. The Science of Fractal Images. Springer-Verlag, New York.

    Google Scholar 

  • Plotnick, R. E., Gardner, R. H. and O'Neill, R. V. 1993. Lacunarity indices as measures of landscape texture. Landscape Ecol. 8: 201–211.

    Google Scholar 

  • Plotnick, R. E., Gardner, R. H. and Perlmutter, M. 1996. Lacunarity analysis: A general technique for the analysis of spatial patterns. Phys. Rev. E53: 5461.

    Google Scholar 

  • Renshaw, E. and Ford, E. D. 1984. The description of spatial pattern using two-dimensional spectral-analysis. Vegetatio 56: 75–85.

    Google Scholar 

  • Solé, R. V. and Manrubia, S. C. 1995. Are rainforests self-organized in a critical state? J. Theor. Biol. 173: 31–40.

    Google Scholar 

  • Stauffer, D. and Aharony, A. 1985. Introduction to Percolation Theory. Taylor and Francis, London.

    Google Scholar 

  • Thompson, J. N. 1994. The Coevolutionary Process. The University of Chicago Press, Chicago.

    Google Scholar 

  • Turner, M. G., Gardner, R. H., Dale, V. H. and O'Neill, R. V 1989. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.

    Google Scholar 

  • With, K. A. and Crist, T. O. 1995. Critical thresholds in species' responses to landscape structure. Ecology 76: 2446–2459.

    Google Scholar 

  • With, K. A. and King, A. W. 1997. The use and misuse of neutral landscape models in ecology. Oikos 79: 219–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keitt, T.H. Spectral representation of neutral landscapes. Landscape Ecology 15, 479–494 (2000). https://doi.org/10.1023/A:1008193015770

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008193015770

Navigation