Skip to main content
Log in

Participation of the Dengue Virus in the Fibrinolytic Process

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

To date, the phatophysiology of hemorrhagic dengue is still unknown and hypotheses which aim to explain the unfortunate cases of the disease (hemorrhagic fever/shock syndrome) are based on epidemiological data and favor the notion of the participation of heterotypic non-neutralizing antibodies during the course of secondary infection (immunologic status of the host). However, cases of hemorrhagic dengue have been reported during the course of primary infections. We propose that the dengue virus, specifically the envelope glycoprotein can participate directly in the installation of the hemorrhagic phenomenon by means of the binding and activation of plasminogen (PLG) as condition previous to the development of the fibrinolytic process. Based on this hypothesis, we evaluated the biological activity of some viral isolates proceeding from hemorrhagic and from dengue fever cases in an in vitro model of fibrinolysis. Dengue isolates were capable of activating PLG. The plasmin generated specifically degraded the fibrin/fibrinogen molecule. This catalytic process can be prevented by the presence of the specific plasmin inhibitor, α-2-antiplasmin, for virus isolates from dengue fever, but not for isolates associated with dengue hemorrhagic disease, favoring the exacerbation of the fibrinolytic activity. This new approach allows us to suggest the importance of viral factors in the dengue hemorrhagic fever.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Westaway E.G., Adv Virol Res 33, 45–90, 1987.

    Google Scholar 

  2. Gubler D.J., Clin Microbiol Rev 11, 480–496, 1998.

    Google Scholar 

  3. Henchal E.A. and Putnak R., Clin Microbiol Rev 3, 376–396, 1990.

    Google Scholar 

  4. Halstead S.B., J Infect Dis 140, 527–533, 1979.

    Google Scholar 

  5. Halstead S.B. and O'Rourke E.J., J Exp Med 146, 210–217, 1977.

    Google Scholar 

  6. Barnes W.J.S. and Rosen L., Am J Trop Med Hyg 23, 495–506, 1974.

    Google Scholar 

  7. Rosen L., Am J Trop Med Hyg 26, 337–343, 1977.

    Google Scholar 

  8. Gubler D.J., Reed D., Rosen L., and Hitchcock JC. Jr., Am J Trop Med Hyg 27, 581–589, 1978.

    Google Scholar 

  9. Bielefeldt-Ohumann H., Trends Microbiol 5, 409–413, 1997.

    Google Scholar 

  10. Lanciotti R.S., Calisher C.H., Gubler D.J., Chang G.J., and Vorndam A.V., J Clin Microbiol 30, 545–551, 1992.

    Google Scholar 

  11. Laemmli UK., Nature 227, 680–685, 1970.

    Google Scholar 

  12. Yuill T.M., Sukhavachan P., Nisalak A., and Russell P.K., Am J Trop Med Hyg 14, 441–448, 1968.

    Google Scholar 

  13. Vries C., Veerman H., and Pannekoek H., J Biol Chem 264, 12604–12610, 1989.

    Google Scholar 

  14. Towbin H., Stachelin T., and Gordin J., Proceedings of the National Academy Sciences USA 76, 4350–4354, 1979.

    Google Scholar 

  15. Sugiyama N., Sasaki T., Iwamoto M., and Abilo Y., Biochim Biophys Acta 952, 1–7, 1988.

    Google Scholar 

  16. Hays W.L., Statistics, 4th. ed. New York: CBS College Publishing, 1988.

    Google Scholar 

  17. Smith J.H., Morris J.P., Chibber B.A., and Castellino F.J., Thromb Res 234, 499–506, 1984.

    Google Scholar 

  18. Strichaikul T., Punyagupta S., Nitiyanant P., and Alkarawong K., Southeast, Am J Trop Med Hyg 6, 106–114, 1975.

    Google Scholar 

  19. Plow E.F., Ferez J., and Miles L.A., Thromb Haemostasis 66, 32–36, 1991.

    Google Scholar 

  20. Boyle M. and Lottenberg R., Thromb Haemostasis 77, 1–10, 1997.

    Google Scholar 

  21. Gubler D.J. and Trent D.W., Infect Agent Dis 2, 383–393, 1994.

    Google Scholar 

  22. Halstead S.B., Science 239, 476–481, 1988.

    Google Scholar 

  23. Halstead S.B., J Infect Dis 11,(Suppl. 4) S830–S839, 1989.

    Google Scholar 

  24. Scott R.M., Nimmannitya S., Bancroft W.H., and Mansuwan P., Am J Trop Med Hyg 25, 866–874, 1976.

    Google Scholar 

  25. Domingo E., Diez J., Martínez M.A., Hernandez J., Holguin A., Borrego B., and Mateu M.G., J Gen Virol 74, 2039–2045, 1993.

    Google Scholar 

  26. Mangada M.N.M. and Igarashi A., Virology 244, 458–466, 1998.

    Google Scholar 

  27. Sánchez I.J. and Ruiz B.H., J Gen Virol 77, 2541–2545, 1996.

    Google Scholar 

  28. Almagro D., González I., Cruz Y., and Castañeda M., Revista Cubana de Medicina Tropical 36, 352–39, 1984.

    Google Scholar 

  29. Plow E.F., Herren T., Redlitz A., Miles L.A., and Hoover-Plow J.L., FASEB J 9, 939–945, 1995.

    Google Scholar 

  30. Wang X., Lin X., Loy J.A., Tang J., and Zhang X.C., Science 281, 1662–1665, 1998.

    Google Scholar 

  31. Rey F.A., Heinz F.X., Mandl C., Kunz C., and Harrison S.C., Nature 375, 291–298, 1995.

    Google Scholar 

  32. Chen Y., Maguire T., Hileman R.E., Fromm J.R., Esko J.D., Linhardt R.J., and Marks R.M., Nat Med 3, 866–871, 1997.

    Google Scholar 

  33. Putnak J.R., Kanesa-Thasan N., and Innis B.L., Nat Med 3, 828–829, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monroy, V., Ruiz, B.H. Participation of the Dengue Virus in the Fibrinolytic Process. Virus Genes 21, 197–208 (2000). https://doi.org/10.1023/A:1008191530962

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008191530962

Navigation