Skip to main content
Log in

High-speed pectic enzyme fractionation by immobilised metal ion affinity membranes

  • Published:
Bioseparation

Abstract

Immobilised metal ion affinity polysulfone hollow-fibre membranes, with a high capacity for protein adsorption, were prepared and their utilisation for commercial pectic enzyme fractionation was studied. The pass-through fraction containing pectinlyase is useful for fruit-juice clarification without methanol production on account of pectinesterase being retained by the IDA-Cu2+ membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alaña A, Gabilondo A, Hernando F, Moragues MD, Domínguez JB, Llama MJ and Serra JL (1989) Pectin lyase production by a Penicillium italicum strain. Appl. Envir. Microb. 55: 1612-1616.

    Google Scholar 

  • Albersheim P (1966) Pectinlyase from fungi. In: Neufeld EF and Ginsburg V (eds) Methods in Enzymology. Vol. 8 (pp. 628-631) Academic Press, New York.

    Google Scholar 

  • Arnold FH (1991) Metal-affinity separations: a new dimension in protein processing. Bio/Technology 9: 151-155.

    Google Scholar 

  • Belew M, Yip TT, Anderson L and Porath J (1987) Interaction of proteins with immobilized Cu2+. Quantitation and equilibrium constants by frontal analysis. J. Chromatogr. 403: 197-206.

    Google Scholar 

  • Camperi SA, Auday RB, Navarro del Cañizo AA and Cascone O (1996) Study of variables involved in fungal pectic enzyme fractionation by immobilized metal ion affinity chromatography. Process Biochem. 31: 81-87.

    Google Scholar 

  • Chase HA (1984) Prediction of the performance of preparative affinity chromatography. J. Chromatogr. 297: 179-202.

    Google Scholar 

  • Kroner KH, Krause S and Deckwer WD (1992) Cross-flow anwendung von affinitätsmembranen zur primärseparation von proteinen. Bioforum. 12: 455-458.

    Google Scholar 

  • Kubota N, Konno Y, Saito K, Sugita K, Watanabe K and Sugo T (1997) Comparison of protein adsorption onto porous hollow-fiber membrane and gel bead-packed bed. J. Chromatogr. 782: 159-165.

    Google Scholar 

  • Navarro del Cañizo AA, Hours RA, Miranda MV and Cascone O (1994) Fractionation of fungal pectic enzymes by immobilized metal ion affinity chromatography. J. Sci. Food Agric. 64: 527-531.

    Google Scholar 

  • Rombouts FM and Pilnik W (1980) Pectic Enzymes. In: Rose AH (ed.) Economic Microbiology, Vol. 5 ( pp. 228-282). Academic Press, London.

    Google Scholar 

  • Szajer I and Szajer Cz (1982) Clarification of apple juices by pectin lyase from Penicillium paxilli. Biotechnol. Lett. 4: 553-556.

    Google Scholar 

  • Thömmes J and Kula MR (1995) Membrane Chromatography — An integrative concept in the downstream processing of proteins. Biotechnol. Prog. 11: 357-366.

    Google Scholar 

  • Vilariño C, Del Giorgio JF, Hours RA and Cascone O (1993) Spectrophotometric method for fungal pectinesterase activity determination. Lebensm Wiss u Technol. 26: 107-110.

    Google Scholar 

  • Wuenschell GE, Wen E, Todd R, Shhek D and Arnold F H (1991) Aqueous two-phase metal affinity extraction of heme proteins. J. Chromatogr. 543: 345-354.

    Google Scholar 

  • Yamagishi H, Saito K, Furusaki S, Sugo T and Ishigaki Y (1991) Introduction of high-density chelating group into a porous membrane without lowering the flux. Ind. Eng. Chem. Res. 30: 2235-2237.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Camperi, S.A., Grasselli, M. & Cascone, O. High-speed pectic enzyme fractionation by immobilised metal ion affinity membranes. Bioseparation 9, 173–177 (2000). https://doi.org/10.1023/A:1008187929132

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008187929132

Navigation