Skip to main content
Log in

Effect of Structure and Pore Size of Mesoporous Molecular Sieve Materials on the Growth of Carbon Nanotubes

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

Microporous and mesoporous molecular sieve materials with different channel structures and pore sizes were applied as supports for Fe-loaded catalysts to catalytically synthesize carbon nanotubes. The deposited carbon materials were characterized by the TEM technique. It was shown that the structures and pore sizes of supports greatly influence the forms and quality of the deposited carbon materials. The larger the pore size of the support used, the larger the diameter and pore size of the carbon nanotubes formed. It seems that the growth of carbon nanotubes can be orientated by the one-dimensional mesoporous structure of hexagonal mesoporous molecular sieve materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and, R. E. Smalley: Nature 318, 162 (1985).

    Google Scholar 

  2. S. Iijima: Nature 354, 56 (1991).

    Google Scholar 

  3. S. Iijima and T. Ichihashi: Nature 363, 603 (1993).

    Google Scholar 

  4. A. Rubio: Condensed Matter News 6, 6 (1997).

    Google Scholar 

  5. P. M. Ajayan: Condensed Matter News 3, 9 (1995).

    Google Scholar 

  6. T. W. Ebbesen: Physics Today 49, 26 (1996).

    Google Scholar 

  7. R. Tenne: Adv. Mater. 7, 965 (1995).

    Google Scholar 

  8. H. Dai et al.: Science 272, 523 (1996).

    Google Scholar 

  9. M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson: Nature 381, 678 (1996).

    Google Scholar 

  10. N. Hamada, S. Sawada, and A. Oshiyama: Phys. Rev. Lett. 68, 1597 (1992).

    Google Scholar 

  11. J. P. Lu: Phys. Rev. Lett. 74, 1123 (1995).

    Google Scholar 

  12. T. W. Ebbesen, H. J. Lezec, H. Hiura, J. W. Bennett, H. F. Ghaemi, and T. Thio: Nature 382, 54 (1996).

    Google Scholar 

  13. S. Frank, P. Poncharal, Z. L. Wang, and de W. A. Heer: Science 280, 1744 (1998).

    Google Scholar 

  14. W. Z. Li, S. S. Xie, L. X. Qian, B. H. Chang, B. S. Zou, R. A. Zhao, and G. Wang: Science 274, 1701 (1996).

    Google Scholar 

  15. G. Che, B. B. Lakshmi, C. R. Martin, E. R. Fisher, and R. R. Ruoff: Chem. Mater. 10, 260 (1998).

    Google Scholar 

  16. C. Guerret-Plecourt, Y. Le Bouar, A. Loiseau, and H. Pascard: Nature 372, 761 (1994).

    Google Scholar 

  17. N. Zabala, M. J. Puska et al.,: Phys. Rev. Lett. 80, 3336 (1998).

    Google Scholar 

  18. A. Rubio, J. L. Corkill, and M. L. Cohen: Phys. Rev. B. 49, 5081 (1994).

    Google Scholar 

  19. N. G. Chopra et al.: Science 269, 966 (1995).

    Google Scholar 

  20. A. Rubio, Y. Miyamoto, X. Blase,M. L. Cohen, and S. G. Louie: Phys. Rev. B. 53, 4023 (1996).

    Google Scholar 

  21. G. Fasol: Science 280, 545 (1998).

    Google Scholar 

  22. P. M. Ajayan and S. Iijima: Nature 361, 333 (1993).

    Google Scholar 

  23. Y. Miyamoto, A. Rubio, X. Blase, M. L. Cohen, and S. G. Louie: Phys. Rev. Lett. 74, 2993 (1995).

    Google Scholar 

  24. W. Han, S. Fan, Q. Li, and Y. Hu: Science 277, 1287 (1997).

    Google Scholar 

  25. J. C. Charlier: Phys. Rev. B. 53, 11108 (1996).

    Google Scholar 

  26. Y. Miyamoto, A. Rubio, S. G. Louie, and M. L. Cohen: Phys. Rev. B. 50, 4976 (1994).

    Google Scholar 

  27. Y. Miyamoto, A. Rubio, S. G. Louie, and M. L. Cohen: Phys. Rev. Lett. 76, 2121 (1996).

    Google Scholar 

  28. W. A. De Heer et al.: Science 270, 1179 (1995).

    Google Scholar 

  29. J. J. Davis, H. A. O. Hill, M. L. H. Green, J. Sloan, and S. C. Tsang: Absract Book of the Second International Interdisciplinary Colloquium on the Science and Technology of the Fullerenes, pp. 173 (1996).

  30. V. P. Dravid, X. Lin, Y. Wang, A. Yee, J. B. Ketterson, and R. P. H. Chang: Science 259, 1601 (1993).

    Google Scholar 

  31. N. Hatta and K. Murata: Chem. Phys. Lett. 217, 398 (1994).

    Google Scholar 

  32. V. Ivanov, J. B. Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Landuyt: Chemical Physics Letters 223, 329 (1994).

    Google Scholar 

  33. P. C. M. Van Stiphout, D. E. Stobbe, F. Th. V. D. Scheur, and J. W. Geus: Appl. Catal. 40, 219 (1988).

    Google Scholar 

  34. A. I. La Cava, C. A. Bernardo, and D. L. Trimm: Carbon 20, 219 (1982).

    Google Scholar 

  35. P. Magnoux and M. Guisnet: Zeolites 9, 329 (1989).

    Google Scholar 

  36. R. T. K. Baker: Carbon 27(3), 315 (1989).

    Google Scholar 

  37. V. Ivanov, A. Fonseca, J. B. Nagy, A. Lucas, P. Lambin, D. Bernaerts, and X. B. Zhang: Carbon 33, 1727 (1995).

    Google Scholar 

  38. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, J. Riga, and A. A. Lucas: Synthetic Metals 77, 31 (1996).

    Google Scholar 

  39. K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, A. Fudala, and A. A. Lucas: Zeolites 17, 4 6 (1996).

    Google Scholar 

  40. G. T. Keer: J. Phys.Chem. 71, 4155 (1967).

    Google Scholar 

  41. G. M. Skeels and D. M. Breck: Proc. 6th Int. Zeolite Conf., (Ed. D. Olsen and A. Bisio) pp. 87–93, UK, Butterworths (1984).

  42. N. He, S. Bao, and Q. Xu: Chin. J. Chem. 15, 42 (1997).

    Google Scholar 

  43. N. He, S. Bao, and Q. Xu: Stud. Surf. Sci. Catal. 105, 85 (1997).

    Google Scholar 

  44. C. T. Cresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, and J. S.: Nature 359, 710 (1992).

    Google Scholar 

  45. P. T. Tanev and T. J. Pinnavaia: Science 267, 865 (1995).

    Google Scholar 

  46. E. P. Barrett, L. G. Joyner, and P. P. Halenda: J. Am. Chem. Soc. 73, 373 (1951).

    Google Scholar 

  47. T. Demarquay and J. Fraissard: J. Chem. Phys. Lett. 136, 314 (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, N., Yang, C., Dai, Q. et al. Effect of Structure and Pore Size of Mesoporous Molecular Sieve Materials on the Growth of Carbon Nanotubes. Journal of Inclusion Phenomena 35, 211–224 (1999). https://doi.org/10.1023/A:1008186613279

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008186613279

Navigation