Skip to main content

Advertisement

Log in

Bovine Herpesvirus Type 2 is Closely Related to the Primate Alphaherpesviruses

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Bovine herpesvirus type 2 (BoHV-2), also known as bovine mammillitis virus, is classified in the Family Herpesviridae, Subfamily Alphaherpesvirinae, and Genus Simplexvirus along with herpes simplex viruses type 1 and 2 (HSV-1 and HSV-2) and other primate simplexviruses on the basis of similarities in 4 genes within the 15 kb UL 23–29 cluster. This could be explained either by a global similarity or a recombination event that brought primate herpesviral sequences into a bovine virus. Our sequences for DNA polymerase (UL30), a large gene adjacent to the previously identified conserved cluster, and glycoprotein G (US4), a gene as distant from the cluster as possible on the circularized genome, confirm the close relationship between BoHV-2 and the primate simplexviruses, and argue for a global similarity and probably a close evolutionary relationship. Thus one can speculate that BoHV-2 may represent a greater hazard to humans than has been appreciated previously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murphy F.A., Fauquet C.M., Bishop D.H.L., Ghabrial S.A., Jarvis A.W., Martelli G.P., Mayo M.A., and Summers M.D. (eds). ``Virus Taxonomy: Classi®cation and Nomenclature of Viruses, Sixth Report of the International Committee on Taxonomy of Viruses''. Arch Virol Supplement 10, Springer Verlag, Wien, New York, 1995.

  2. Alexander R.A., Plowright W., and Haig D.A., Bull Epiz Dis Afr 5, 489±492, 1957.

    Google Scholar 

  3. Dardiri A.H. and Stone S.S., US An Health Assoc Proc 76, 156± 171, 1972.

    Google Scholar 

  4. Rweyemamu M.M., Johnson R.H., and Laurillard R.E., British Vet J 125, 317±325, 1969.

    Google Scholar 

  5. Gibbs E.P.J., and Rweyemamu M.M., Vet Bulletin 47, 411± 425, 1977.

    Google Scholar 

  6. PlowrightW. and Jessett D.M., J Hyg Camb 69, 209±222, 1971.

    Google Scholar 

  7. Lawman M.J.P., Evans D., Gibbs E.P.J., McDiarmid A., and Rowe L., Br Vet J 134, 85±91, 1978.

    Google Scholar 

  8. Wesbury H.A., Res Vet Sci 31, 353±357, 1981.

    Google Scholar 

  9. Deas D.W., and Johnston W.S., Vet Rec 78, 828±829, 1966.

    Google Scholar 

  10. Pepper T.A., Stafford L.P., Johnson R.H., and Osborne A.D., Vet Rec 78, 569±570, 1966.

    Google Scholar 

  11. Castrucci G., Ferrari M., Frigeri F., and Aldrovandi V., Microbiologica 13, 101±107, 1990.

    Google Scholar 

  12. Sterz H., Ludwig H., and Rott R., Intervirology 2, 1±13, 1974.

    Google Scholar 

  13. Borchers K., OÈ zel M., Pauli G., Gelderblom H.R., and Ludwig H., Arch Virol 111, 1±14, 1990.

    Google Scholar 

  14. Buchman T.G. and Roizman B., J Virol 27, 239±254, 1978.

    Google Scholar 

  15. Sheppard M. and May J.T., J Gen Virol 70, 3067±3071, 1989.

    Google Scholar 

  16. HammerschmidtW., Conraths F., Mankertz J., Pauli G., Ludwig H., and Buhk H.-J., Virology 165, 388±405, 1988.

    Google Scholar 

  17. McGeoch D.J. and Cook S., J Mol Biol 238, 9±22, 1994.

    Google Scholar 

  18. VanDevanter D.R., Warrener P., Bennett L., Schultz E.R., Coulter S., Garber R.L., and Rose T.M., J Clin Microbiol 34, 1666±1671, 1996.

    Google Scholar 

  19. Ehlers B., Borchers K., Grund C., FroÈlich K., Ludwig H., and Buhk H.-J., Virus Genes 18, 1±10, 1999.

    Google Scholar 

  20. Tsuei D.-J., Chen P.-J., Lai M.-Y., Chen D.-S., Yang C.-S., Chen J.-Y. and Hsu T.-Y., J Virol Methods 49, 269±284, 1994.

    Google Scholar 

  21. Christensen L.S. and Normann P., J Virol Methods 37, 99±102, 1992.

    Google Scholar 

  22. Thompson J.D., Higgins D.G., and Gibson T.J., Nucleic Acids Res 22, 4673±4680, 1994.

    Google Scholar 

  23. McGeoch D.J., Cook S., Dolan A., Jamieson F.E., and Telford E.A.R., J Mol Bio 247, 443±458, 1995.

    Google Scholar 

  24. Felsenstein J., Evolution 39, 783±791, 1985.

    Google Scholar 

  25. Knopf C.W., Virus Genes 16, 47±58, 1998.

    Google Scholar 

  26. von Heijne G., Nucleic Acids Res 14, 4683±4690, 1986.

    Google Scholar 

  27. Klein P., Kanehisa M., and DeLisi C., Biochim Biophys Acta 815, 468±476, 1985.

    Google Scholar 

  28. Henke W., Herdel K., Jung K., Schnorr D., and Loenig S.A., Nucl Acids Res 25, 3957±3958, 1997.

    Google Scholar 

  29. Longnecker R. and Roizman B., Science 236, 573±576, 1987.

    Google Scholar 

  30. Keil G.M., Engelhardt T., Karger A., and Enz M., J Virol 70, 3032±3038, 1996.

    Google Scholar 

  31. Mettenleiter T.C. and Rauh I, J Virol Methods 30, 55±65, 1990.

    Google Scholar 

  32. Su H.K., Fetherston J.D., Smith M.E., and Courtney R.J., J Virol 67, 2954±2959, 1993.

    Google Scholar 

  33. Skinner G.R.B., Buchan A., Durham J., Cowan M., Davies J., Brookes K., and Castrucci G., Vaccine 5, 55±59, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehlers, B., Goltz, M., Ejercito, M.P. et al. Bovine Herpesvirus Type 2 is Closely Related to the Primate Alphaherpesviruses. Virus Genes 19, 197–203 (1999). https://doi.org/10.1023/A:1008184630066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008184630066

Navigation