Skip to main content
Log in

Functional Interactions between Conserved Motifs of the Hepatitis C Virus RNA Helicase Protein NS3

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

The hepatitis C virus NS3 gene encodes a RNA helicase with several sequence motifs conserved among the members of the DExH box protein family. The contributions of the sequence motifs to enzyme activity were assessed in this study by substitution of alanine for the Lys in the ATP binding motif GxGK (referred to as K1236A mutation), or for the Asp in the DExH motif (D1316A), or for the Arg in the middle of the QRxGRxGR motif known for RNA binding (R1490A). Histidine-tagged recombinant proteins of Mr 54,000 were expressed in Escherichia coli and purified by chromatography on nickel agarose. All three mutants were severely defective in ATPase and RNA helicase activities, but loss of the ATPase activity was not dependent on polynucleotide cofactors. With the exception of R1490A mutant, a stable complex was formed between dsRNA substrates and recombinant proteins, indicating that the arginine-rich motif is required for efficient RNA binding. Complex formation was not affected by omission of ATP or substitution by a non-hydrolyzable analog AMP-PCP, suggesting that neither binding nor hydrolysis of ATP is required for RNA binding. Moreover, the K1236A mutant which was defective in binding ATP exhibited an unusually strong affinity for RNA duplex. These results suggest that the conserved motifs cooperatively constitute a large functional domain rather than act as individual domains with strictly independent functions, and that alteration of one motif affects functions of other motifs in a mutually interactive fashion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Clarke B., J Gen Virol 78, 2397–2410, 1997.

    Google Scholar 

  2. Neddermann P., Tomei L., Steinkuhler C., Gallinari P., Tramontano A., and De Francesco R., Biol Chem 378, 469–476, 1997.

    Google Scholar 

  3. Suzich J.A., Tamura J.K., Palmer-Hill F., Warrener P., Grakoui A., Rice C.M., Feinstone S.M., and Collett M.S., J Virol 67, 6152–6158, 1993.

    Google Scholar 

  4. Jin L. and Peterson D.L., Arch Biochem Biophys 323, 47–53, 1995.

    Google Scholar 

  5. Kim D.W., Gwack Y., Han J.H., and Choe J., Biochem Biophys Res Commun 215, 160–166, 1995.

    Google Scholar 

  6. Hong Z., Ferrari E., Wright-Minogue J., Chase R., Risano C., Seelig G., Lee C.-G., and Kwong A.D., J Virol 70, 4261–4268, 1996.

    Google Scholar 

  7. Tai C.-L., Chi W.-K., Chen D.-S., and Hwang L.H., J Virol 70, 8477–8484, 1996.

    Google Scholar 

  8. Morgenstern K.A., Landro J.A., Hsiao K., Lin C., Gu Y., Su M.S.-S., and Thomson J.A., J Virol 71, 3767–3775, 1997.

    Google Scholar 

  9. Schimid S.R. and Linder P., Mol Microbiol 6, 283–292, 1992.

    Google Scholar 

  10. Fuller-Pace F.V., Trends Cell Biol 4, 271–274, 1994.

    Google Scholar 

  11. Kadare G., and Haenni A.-L., J Virol] 71, 2583–2590, 199

    Google Scholar 

  12. Pause A. and Sonenberg N., EMBO J 11, 2643–2654, 1992.

    Google Scholar 

  13. Gorbalenya A.E., Koonin E.V., Donchenko A.P., and Blinov V.M., Nucleic Acids Res 17, 4713–4730, 1989.

    Google Scholar 

  14. Linder P., Lasko P.F., Ashburner M., Leroy P., Nielsen P.J., Nishi K., Schnier J., and Slonimsky P.P., Nature 337, 121–122, 1989.

    Google Scholar 

  15. Pause A., Methot N., and Sonenberg N., Mol Cell Biol 13, 6789–6798, 1993.

    Google Scholar 

  16. Cho Y.-G., Yoon J.-W., Jang K.-L., Kim C.-M., and Sung Y.-C., Mol & Cells 3, 195–202, 1993.

    Google Scholar 

  17. Ho S.N., Hunt H.D., Horton R.M., Pullen J.K., and Pease L.R., Gene 77, 51–59, 1989.

  18. Tamura J.K. and Gellert M., J Biol Chem 265, 21342–21349, 1990.

    Google Scholar 

  19. Lee C.-G. and Hurwitz J., J Biol Chem 267, 4398–4407, 1992.

    Google Scholar 

  20. Fernandez A., Lain S., and Garcia J.A., Nucleic Acids Res 23, 1327–1332, 1995.

    Google Scholar 

  21. Kim D.W., Kim J., Gwack Y., Han J.H., and Choe J., J Virol 71, 9400–9409, 1997.

  22. Gross C.H. and Shuman S., J Virol 70, 1706–1713, 1996.

    Google Scholar 

  23. Yao N., Hesson T., Cable M., Hong Z., Kwong A.D., Le H.V., and Weber P.C., Nat Struct Biol 4, 463–467, 1997.

    Google Scholar 

  24. Kim J.L., Morgenstern K.A., J.P., Dwyer M.D., Thomson J.A., Murcko M.A., Lin C., and Caron P.R., Structure 6, 89–100, 1998.

    Google Scholar 

  25. Story R.M. and Steitz T.A., Nature 355, 374–376, 1992.

    Google Scholar 

  26. Gross C.H. and Shuman S., J Virol 69, 4727–4736, 1995.

    Google Scholar 

  27. Sung P., Higgins D., Prakash L., and Prakash S., EMBO J 7, 3263–3269, 1988.

    Google Scholar 

  28. Heilek G.M. and Peterson M.G., J Virol 71, 6264–6266, 1997.

    Google Scholar 

  29. Eagles R.M., Balmori-Melian E., Beck D.L., Gardner R.C., and Forster R.L.S., Eur J Biochem 224, 677–684, 1994.

    Google Scholar 

  30. Fernandez A., Guo H.S., Saenz P., Simon-Buela L., Gomez de Cedron M., and Garcia J.A., Nucleic Acids Res 25, 4474–4480, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, KH., Sung, YC., Choi, SY. et al. Functional Interactions between Conserved Motifs of the Hepatitis C Virus RNA Helicase Protein NS3. Virus Genes 19, 33–43 (1999). https://doi.org/10.1023/A:1008184522153

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008184522153

Navigation