Landscape Ecology

, Volume 14, Issue 6, pp 577–598 | Cite as

Thermal infrared remote sensing for analysis of landscape ecological processes: methods and applications

  • Dale A. Quattrochi
  • Jeffrey C. Luvall

Abstract

Thermal infrared (TIR) remote sensing data can provide important measurements of surface energy fluxes and temperatures, which are integral to understanding landscape processes and responses. One example of this is the successful application of TIR remote sensing data to estimate evapotranspiration and soil moisture, where results from a number of studies suggest that satellite-based measurements from TIR remote sensing data can lead to more accurate regional-scale estimates of daily evapotranspiration. With further refinement in analytical techniques and models, the use of TIR data from airborne and satellite sensors could be very useful for parameterizing surface moisture conditions and developing better simulations of landscape energy exchange over a variety of conditions and space and time scales. Thus, TIR remote sensing data can significantly contribute to the observation, measurement, and analysis of energy balance characteristics (i.e., the fluxes and redistribution of thermal energy within and across the land surface) as an implicit and important aspect of landscape dynamics and landscape functioning.

The application of TIR remote sensing data in landscape ecological studies has been limited, however, for several fundamental reasons that relate primarily to the perceived difficulty in use and availability of these data by the landscape ecology community, and from the fragmentation of references on TIR remote sensing throughout the scientific literature. It is our purpose here to provide evidence from work that has employed TIR remote sensing for analysis of landscape characteristics to illustrate how these data can provide important data for the improved measurement of landscape energy response and energy flux relationships. We examine the direct or indirect use of TIR remote sensing data to analyze landscape biophysical characteristics, thereby offering some insight on how these data can be used more robustly to further the understanding and modeling of landscape ecological processes.

land-atmosphere energy exchanges landscape thermal responses thermal infrared remote sensing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. M. and Wilson, S. B. 1984. The physical basis of current infrared remote-sensing techniques and the interpretation of data from aerial surveys. Int. J. Remote Sensing 5(1): 1–18.Google Scholar
  2. Anderson, J. E. 1992. Determination of water surface temperatures based on the use of thermal infrared multispectral scanner data. GeoCarto Int. 7(3): 3–8.Google Scholar
  3. Artis, D. A. and Carnahan, W. H. 1982. Survey of emissivity variability in thermography of urban areas. Remote Sensing Env. 12: 313–329.Google Scholar
  4. Asrar, G. 1989. Theory and applications of optical remote sensing. John Wiley & Sons, New York.Google Scholar
  5. Astling, E. G. and Quattrochi, D. A. 1989. Thermal characteristics of mountain desert terrain derived from Thermal Infrared Multispectral Scanner data. In Technical Papers, ASPRS/ACSM Annual Convention. Vol. 3, Remote Sensing. American Society for Photogrammetry and Remote Sensing, Falls Church, VA, pp. 217–225.Google Scholar
  6. Berk, A. L., Bernstein, L. S. and Robertson, D. C. 1989. MODTRAN: A Moderate Resolution Model for LOWTRAN 7. U.S. Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts.Google Scholar
  7. Boyd, D. S., Foody, G. M., Curran, P. J., Lucas, R. M. and Honzak, M. 1996. An assessment of radiance in Landsat TM middle and thermal infrared wavebands for the detection of tropical forest regeneration. Int. J. Remote Sensing 17(2): 249–261.Google Scholar
  8. Buettner, K. J. K. and Kern, C. D. 1965. The determination of infrared emissivities of terrestrial surfaces. J. Geophys. Res. 70(6): 1329–1337.Google Scholar
  9. Carlson, T. N. 1986. Regional-scale estimates of surface moisture availability and thermal inertia using remote thermal measurements. Remote Sensing Rev. 1(2): 197–247.Google Scholar
  10. Carlson, T. N. and Buffum, M. J. 1989. On estimating total daily evapotranspiration from remote surface temperature measurements. Remote Sensing Env. 29: 197–207.Google Scholar
  11. Carlson, T. N., Dodd, J. K., Benjamin, J. F. and Cooper, J. N. 1981. Satellite estimation of the surface energy balance, moisture availability, and thermal inertia. J. Appl. Meteorol. 20: 67–87.Google Scholar
  12. Carlson, T. N., Capehart, W. J. and Gillies, R. R. 1995. A new look at the Simplified Method for remote sensing of daily evapotranspiration. Remote Sensing Env. 54: 161–167.Google Scholar
  13. Chen, E., Allen, L. H., Jr., Bartholic, J. F., Bill, R. G., Jr. and Sutherland, R. A. 1979. Satellite-sensed winter nocturnal temperature patterns of the Everglades agricultural area. J. Appl. Meteorol. 18: 992–1002.Google Scholar
  14. Chen, E., Allen, L. H., Jr., Bartholic, J. F. and Gerber, J. F. 1982. Delineation of cold-prone areas using nighttime SMS/GOES thermal data: Effects of soils and water. J. Appl. Meteorol. 21: 1528–1537.Google Scholar
  15. Choudury, B. J. 1991. Multispectral satellite data in the context of land surface heat balance. Rev. Geophys. 29(2): 217–236.Google Scholar
  16. Cracknell, A. P. and Xue, Y. 1996. Thermal inertia determination from space - a tutorial review. Int. J. Remote Sensing 17(3): 431–461.Google Scholar
  17. Davis, A. P. and Lettington, A. H. 1988. Principles of thermal imaging. In Applications of Thermal Imaging. pp. 1–34. Edited by S. G. Burnay, T. L. Williams and C. H. Jones. Adam Hilger, Philadelphia.Google Scholar
  18. Donner, B. L. and Running, S. W. 1986. Water stress response after thinning Pinus contorta stands in Montana. Forest Sci. 32: 614–625.Google Scholar
  19. EOS, 1995. 1995 MTPE EOS Reference Handbook. NASA EOS Project Office. Goddard Space Flight Center. Greenbelt, MD.Google Scholar
  20. EOS, 1997. 1997 MTPE EOS Data Products Handbook. Volume 1, TRMM & AM-1. NASA EOS Project Office. Goddard Space Flight Center. Greenbelt, MD.Google Scholar
  21. Estes, J. E., Hajic, E. J. and Tinney, L. R. 1983. Fundamentals of image analysis: Analysis of visible and thermal infrared data. In Manual of Remote Sensing, 2nd ed. pp. 987–1124. Edited by R. N. Colwell. American Society for Photogrammetry and Remote Sensing, Falls Church, VA.Google Scholar
  22. FIFE. 1992. FIFE special issue. J. Geophys. Res. 97(D17): 18,343–19,109.Google Scholar
  23. Friedl, M. A. and Davis, F. W. 1994. Sources of variation in radiometric surface temperature over a tallgrass prarie. Remote Sensing Env. 48: 1–17.Google Scholar
  24. Gauthier, F. and Tabbagh, A. 1994. The use of airborne thermal remote sensing for soil mapping: A case study in the Limousin Region (France). Int. J. Remote Sensing 15(10): 1981–1989.Google Scholar
  25. Gillespie, A. R., Kahle, A. B. and Palluconi, F. D. 1984. Mapping alluvial fans in Death Valley, California, using mutichannel TIMS infrared images. Geophys. Res. Letters 11(11): 1153–1156.Google Scholar
  26. Gillies, R. R. and Carlson, T. N. 1995. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. J. Appl. Meteorol. 34: 745–756.Google Scholar
  27. Gillies, R. R., Carlson, T. N., Cui, J., Kustas, W. P., and Humes, K. S. 1997. A verification of the ‘triangle’ method for obtaining surface soil water content and energy fluxes from remote measurements of the Normalized Difference Vegetation Index (NDVI) and surface radiant temperature. Int. J. Remote Sensing 18(15): 3145–3166.Google Scholar
  28. Goossens, R., D'Haluin, E. and Larnoe, G. 1991. Satellite Image Interpretation (SPOT) for the Survey of the Ecological Infrastructure in a Small Scaled Landscape (Kempenland, Belgium). Landscape Ecol. 5(3): 175–182.Google Scholar
  29. Goodin, D. G. 1995. Mapping the surface radiation budget and net radiation in a Sand Hills wetland using a combined modeling/remote sensing method and Landsat thematic mapper imagery. Geocarto Int. 10(2): 19–29.Google Scholar
  30. Goward, S. N., Cruickshanks, G. D. and Hope, A. S. 1985. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated surface. Remote Sensing Env. 18: 137–146.Google Scholar
  31. Graetz, R. D. 1990. Remote sensing of terrestrial ecosystem structure: An ecologist's pragmatic view. In Remote Sensing of Biosphere Functioning. pp. 5–30. Edited by R. J. Hobbs and H. A. Mooney. Springer-Verlag, New York.Google Scholar
  32. Greegor, D. H., Jr. 1986. Ecology from space. Bioscience 36(7): 429–432.Google Scholar
  33. Griggs, M. 1968. Emissivities of natural surfaces in the 8–to 14–micron spectral region. J. Geophys. Res. 73: 7545–7551.Google Scholar
  34. Haines-Young, R. H. 1992. The Use of Remotely-Sensed Satellite Imagery for Landscape Classification in Wales (U.K.). Landscape Ecol. 7(4): 253–274.Google Scholar
  35. Haines-Young, R. H., Green, D. R. and Cousins, S. H. (Eds.) 1994. Landscape Ecology and GIS. Taylor and Francis, London.Google Scholar
  36. Hall, F. G., Strebel, D. E. and Sellers, P. J. 1988. Linking Knowledge Among Spatial and Temporal Scales: Vegetation, Atmosphere, Climate and Remote Sensing. Landscape Ecol. 2(1): 3–22.Google Scholar
  37. Hall, F. G., Hummerich, K. F., Goetz, S. J., Sellers, P. J. and Nickeson, J. E. 1992. Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. J. Geophys. Res. 97(D17): 19,061–19,089.Google Scholar
  38. Heilman, J. L., Kanemasu, E. T., Rosenberg, N. J. and Blad, B. L. 1976. Thermal scanner measurement of canopy temperatures to estimate evapotranspiration. Remote Sensing Env. 5: 137–145.Google Scholar
  39. Hobbs, R. J. 1990. Remote Sensing of Spatial and Temporal Dynamics of Vegetation. In Remote Sensing of Biosphere Functioning. pp. 203–219. Edited by R. J. Hobbs and H. A. Mooney. Springer-Verlag, New York.Google Scholar
  40. Holbo, H. R. and Luvall, J. C. 1989. Modeling surface temperature distributions in forest landscapes. Remote Sensing Env. 27: 11–24.Google Scholar
  41. Idso, S. B., Jackson, R. D. and Reginato, R. J. 1975. Estimating Evaporation: A Technique Adaptable to Remote Sensing. Science 189: 991–992.Google Scholar
  42. Idso, S. B., Jackson, R. D. and Reginato, R. J. 1976. Compensating for environmental variability in the thermal inertia approach to remote sensing of soil moisture. J Appl. Meteorol. 15: 811–817.Google Scholar
  43. Iverson, L. R., Cook, E. A. and Graham, R. L. 1994. Regional forest cover estimation via remote sensing: The calibration center concept. Landscape Ecol. 9(3): 159–174.Google Scholar
  44. Jackson, T. J. 1986. Soil water modeling and remote sensing. Transactions Geosci. Remote Sensing GE-24(1): 37–46.Google Scholar
  45. Kahle, A. B., Schieldge, J. P. and Alley, R. E. 1984. Sensitivity of thermal inertia calculations to variations in environmental factors. Remote Sensing Env. 16: 211–232.Google Scholar
  46. Kahle, A. B. 1987. Surface emittance, temperature and thermal inertia derived from Thermal Infrared Multispectral Scanner (TIMS) data for Death Valley, California. Geophysics 52(7): 858–874.Google Scholar
  47. Kalma, J. D., Laughlin, G. P., Green, A. A. and O'Brien, M. T. 1986. Minimum temperature surveys based on near-surface air temperature measurements and airborne thermal scanner data. J. Climatology 6: 413–430.Google Scholar
  48. Kidder, S. Q. and Vonder Haar, T. H. 1995. Satellite Meteorology: An Introduction. Academic Press, New York.Google Scholar
  49. Kneizys, F. X., Shettle, E. P., Gallery, W. O., Chetwynd, J. J., Jr., Abreu, L. W., Selby, J. E. A., Clough, S. A. and Fenn, R. W. 1983. Atmospheric Transmittance/Radiance: Computer Code LOWTRAN 6. U.S. Air Force Geophysics Laboratory, Environmental Research Papers No. 846 (AFGL-TR-83–0187), Hanscom Air Force Base, Massachusetts.Google Scholar
  50. Kustas, W. P., Pinker, R. T., Schmugge, T. J. and Humes, K. S. 1994. Daytime net radiation estimated for a semiarid rangeland basin from remotely sensed data. Agric. Forest Meteorol. 71: 337–357.Google Scholar
  51. Lagouarde, J. P. and McAneney, K. J. 1992. Daily sensible heat flux estimation from a single measurement of surface temperature and maximum air temperature. Boundary Layer Meteorol. 44: 245–260.Google Scholar
  52. Landsberg, H. E. 1981. The Urban Climate. Academic Press, New York.Google Scholar
  53. Lambin, E. F. and Ehrlich, D. 1996. The surface temperature-vegetation index space for land cover and land-cover change analysis. Int. J. Remote Sensing 17(3): 463–487.Google Scholar
  54. Laymon, C., Quattrochi, D., Malek, E., Hipps, L., Boettinger, J. and McCurdy, G. 1998. Remotely-sensed regional-scale evapotranspiration of a semi-arid Great Basin desert and its relationship to geomorphology, soils, and vegetation. Geomorphology 21(3–4): 329–349.Google Scholar
  55. Lillesand, T. M. and Kiefer, R.W. 1987. Remote Sensing and Image Interpretation. John Wiley and Sons, New York.Google Scholar
  56. Lo, C. P., Quattrochi, D. A. and Luvall, J. C. 1997. Application of high-resolution thermal infrared remote sensing and GIS to assess the urban heat island effect. Int. J. Remote Sensing 18(2): 287–304.Google Scholar
  57. Luvall, J. C. and Holbo, H. R. 1989. Measurements of Short-Term Thermal Responses of Coniferous Forest Canopies Using Thermal Scanner Data. Remote Sensing Env. 27: 1–10.Google Scholar
  58. Luvall, J. C., Lieberman, D., Lieberman, M., Hartshorn, G. S. and Peralta, R. 1990. Estimation of tropical forest canopy temperatures, thermal response numbers, and evapotranspiration using an aircraft-based thermal sensor. Photogrammetric Eng. Remote Sensing 56(10): 1393–1401.Google Scholar
  59. Luvall, J. C. and Holbo, H. R. 1991. Thermal Remote Sensing Methods in Landscape Ecology. In Quantitative Methods in Landscape Ecology. pp. 127–152. Edited by M. G. Turner and R. H. Gardner. Springer-Verlag, New York.Google Scholar
  60. Luvall, J. C., Schneider, E. D. and Kay, J. J. 1997. Thermal remote sensing and its use for studying the thermodynamics of ecosystem development. Landscape Ecol. (accepted for publication).Google Scholar
  61. Luvall, J. C. 1997. The use of remotely sensed surface temperatures from an aircraft-based Thermal Infrared Multispectral Scanner (TIMS) to estimate the spatial and temporal variability of latent heat fluxes and thermal response numbers from a white pine (Pinus strobus L.) plantation. In Scale in Remote Sensing and GIS. pp. 169–185. Edited by D. A. Quattrochi and M. F. Goodchild. CRC/Lewis Publishers, Boca Raton, Florida.Google Scholar
  62. Metzger, J. P. and Muller, E. 1996. Characterizing the complexity of landscape boundaries by remote sensing. Landscape Ecol. 11(2): 65–77.Google Scholar
  63. Miller, D. H. 1981. Energy at the Surface of the Earth. Academic Press, New York.Google Scholar
  64. MTPE EOS Reference Handbook 1995. NASA, Goddard Space Flight Center.Google Scholar
  65. Moody, A. and Woodcock, C. E. 1995. The influence of scale and the spatial characteristics of landscapes on land-cover mapping using remote sensing. Landscape Ecol. 10(6): 363–379.Google Scholar
  66. Moran, M. S. and Jackson, R. D. 1991. Assessing the spatial distribution of evapotranspiration using remotely sensed inputs. J. Env. Quality 20: 725–737.Google Scholar
  67. Nellis, M. D. 1982. Application of thermal infrared imagery to canal leakage detection. Remote Sensing Env. 12: 229–234.Google Scholar
  68. Nellis, M. D. and Briggs, J. M. 1989. The Effect of Spatial Scale on Konza Landscape Classification Using Textural Analysis. Landscape Ecol. 2(2): 93–100.Google Scholar
  69. Nemani, R. R. and Running, S. W. 1989a. Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. 28: 276–284.Google Scholar
  70. Nemani, R. R. and Running, S. W. 1989b. Testing a theoretical climate-soil-leaf area hydrologic equilibrium of forests using satellite data and ecosystem simulation. Agric. Forest Meteorol. 44: 245–260.Google Scholar
  71. Nemani, R., Pierce, L. and Running, S. 1993. Developing satellite-derived estimates of surface moisture status. J. Appl. Meteorol. 32: 548–557.Google Scholar
  72. Nichol, J. E. 1995. Monitoring tropical rain forest microclimate. Photogrammetric Engin. Remote Sensing 61(9): 1159–1165.Google Scholar
  73. Nieuenhuis, G. J. A., Schmidt, E. A. and Tunnissen, H. A. M. 1985. Estimation of regional evapotranspiration or arable crops from thermal infrared images. Int. J. Remote Sensing 6: 1319–1334.Google Scholar
  74. Norman, J. M., Divakarla, M. and Goel, N. S. 1995. Algorithms for extracting information from remote thermal-IR observations of the Earth's surface. Remote Sensing Env. 51: 157–168.Google Scholar
  75. Oke, T. R. 1987. Boundary Layer Climates. 2nd ed. Methuen, New York.Google Scholar
  76. Ottlé, C. and Vidal-Madjar, D. 1994. Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-MOBILHY region. J. Hydrol. 158: 241–264.Google Scholar
  77. Palluconi, F. D. and Meeks, G. R. 1985. Thermal Infrared Multispectral Scanner TIMS: An Investigator's Guide to TIMS Data. JPL Publication 85–32. NASA, Jet Propulsion Laboratory, Pasadena, California.Google Scholar
  78. Petersen, G.W., Connors, K. F., Miller, D. A., Day, R. L. and Gardner, T. W. 1987. Aircraft and satellite remote sensing of desert soils and landscapes. Remote Sensing Env. 23: 253–271.Google Scholar
  79. Peterson, D. L. and Running, S. W. 1989. Applications in forest science management. In Theory and Applications of Optical Remote Sensing. pp. 429–473. Edited by G. Asrar. John Wiley and Sons, New York.Google Scholar
  80. Pierce, L. L and Congalton, R. G. 1988. A methodology for mapping forest latent heat flux densities using remote sensing. Remote Sensing Env. 24: 405–418.Google Scholar
  81. Pierce, L. L., Running, S.W. and Riggs, G. A. 1990. Remote detection of canopy water stress in coniferous forests using the NS001 thematic mapper simulator and the thermal infrared multispectral scanner. Photogrammetric Eng. Remote Sensing 56(5): 579–586.Google Scholar
  82. Price, J. C. 1977. Thermal inertia mapping: A new view of the earth. J. Geophys. Res. 82(18): 2582–2590.Google Scholar
  83. Price, J. C. 1980. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation. Water Res. Res. 16(4): 787–795.Google Scholar
  84. Price, J. C. 1982. Estimation of regional scale evapotranspiration through analysis of satellite thermal-infrared data. IEEE Trans Geosci. Remote Sensing GE-20(3): 286–292.Google Scholar
  85. Price, J. C. 1989. Quantitative aspects of remote sensing in the thermal infrared. In Theory and Applications of Optical Remote Sensing. pp. 578–603. Edited by G. Asrar. John Wiley and Sons, New York.Google Scholar
  86. Quattrochi, D. A. and Pelletier, R. E. 1991. Remote Sensing for Analysis of Landscapes: An Introduction. In Quantitative Methods in Landscape Ecology. pp. 51–76. Edited by M. G. Turner and R. H. Gardner. Springer-Verlag, New York.Google Scholar
  87. Quattrochi, D. A. and Ridd, M. K. 1994. Measurement and analysis of thermal energy responses from discrete urban surfaces using remote sensing data. Int. J. Remote Sensing 15(10): 1991–2022.Google Scholar
  88. Quattrochi, D. A. and Goel, N. S. 1995. Spatial and temporal scaling of thermal infrared remote sensing data. Remote Sensing Rev. 12: 255–286.Google Scholar
  89. Quattrochi, D. A. and Ridd, M. K. 1998. Analysis of Vegetation within a semi-arid urban environment using high spatial resolution airborne thermal infrared remote sensing data. Atmos. Env. 32(1): 19–33.Google Scholar
  90. Reginato, R. J., Idso, S. B., Vedder, J. F., Jackson, R. D., Blanchard, M. B. and Goettelman, R. 1976. Soil water content and evaporation determined by thermal parameters obtained from ground-based and remote measurements. J. Geophys. Res. 81(9): 1617–1620.Google Scholar
  91. Reginato, R. J., Jackson, R. D. and Pinter, P. J., Jr. 1985. Evapotranspiration calculated from remote multispectral and ground station meteorological data. Remote Sensing Env. 18: 75–89.Google Scholar
  92. Reutter, H., Olesen, F.-S. and Fischer, H. 1994. Distribution of the brightness temperature of land surfaces determined from AVHRR data. Int. J. Remote Sensing 15(1): 95–104.Google Scholar
  93. Risser, P. G., Karr, J. R. and Forman, R. T. T. 1984. Landscape Ecology: Directions and Approaches. Illinois Natural History Survey Special Publication Number 2. Report on a workshop held at Allerton Park, Piatt County, Illinois, April 1983. Illinois Natural History Survey, Champaign, Illinois.Google Scholar
  94. Risser, P. G. 1987. Landscape ecology: State of the art. In Landscape Heterogeneity and Disturbance. pp. 3–14. Edited by M. G. Turner. Springer-Verlag, New York.Google Scholar
  95. Sader, S. A. 1986. Analysis of effective radiant temperatures in a Pacific Northwest forest using Thermal Infrared Multispectral Scanner data. Remote Sensing Env. 19: 105–115.Google Scholar
  96. Sandholt, I. and Anderson, H. S. 1993. Derivation of actual evapotranspiration in the Senegalese Sahel, using NOAA-AVHRR data during the 1987 growing season. Remote Sensing Env. 46: 164–172.Google Scholar
  97. Schneider, E. D and Kay, J. J. 1998. Life as a Manifestation of the Second Law of Thermodynamics. Math Comp. Modelling 19(68): 25–48.Google Scholar
  98. Seguin, B. and Itier, B. 1983. Using midday surface temperature to estimate daily evaporation from satellite thermal IR data. Int. J. Remote Sensing 4(2): 371–383.Google Scholar
  99. Sellers, P. J., Hall, F. G., Asrar, G., Strebel, D. E., and Murphy, R. E. 1992. An overview of the First International Satellite Land Surface Climatology Project (ISLSCP) Field Experiment (FIFE). J. Geophys. Res. 97(D17): 18,345–18,371.Google Scholar
  100. Sellers, P. J., Meeson, B. W., Hall, F. G., Asrar, G., Murphy, R. E., Schiffer, R. A., Bretherton, F. P, Dickinson, R. E., Ellingson, R. G., Field, C. B., Huemmrich, K. F., Justice, C. O., Melack, J. M., Roulet, N. T., Schimel, D. S. and Try, P. D. 1995a. Remote sensing of the land surface for studies of global change: Models - algorithms - experiments. Remote Sensing Env. 51: 3–26.Google Scholar
  101. Sellers, P. J., Hall, F., Margolis, H., Kelly, B., Baldocchi, D., den Hartog, G., Cihlar, J., Ryan, M., Goodison, B., Crill, P., Ranson, K. J., Lettenmaier, D. and Wickland, D. E. 1995b. The Boreal Ecosystem-Atmosphere study (BOREAS): An overview and early results from the 1994 field year. Bull. Am. Meteorol. Soc. 76(9): 1549–1577.Google Scholar
  102. Sellers, P. J., Hall, F. G., Kelly, R. D., Black, A, Baldocchi, D., Berry, J., Ryan, m, Ranson, K. J., Crill, P. M., Lettenmaier, D. P., Margolis, H, Cihlar, J., Newcomer, J., Fitzjarrald, D., Jarvis, P. G., Gower, S. T., Halliwell, D., Williams, D., Goodison, B., Wickland, D. and Guertin, F. E. 1997. BOREAS in 1997: Experiment overview, scientific results, and future directions. J. Geophys. Res. 102(D24): 28,731–28,769.Google Scholar
  103. Short, N. M. and Stuart, L. M., Jr. 1982. The Heat Capacity Mapping Mission (HCMM) Anthology. NASA SP-465. NASA Scientific and Technical Information Branch, Washington, DC.Google Scholar
  104. Soer, G. J. R. 1980. Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures. Remote Sensing Env. 9: 27–45.Google Scholar
  105. Sugita, M. and Brutsaert, W. 1993. Comparison of land surface temperatures derived from satellite observations with ground truth during FIFE. Int. J. Remote Sensing 14(9): 1659–1676.Google Scholar
  106. Sun, J. and Mahrt, L. 1994. Spatial distribution of surface fluxes estimated from remotely sensed variables. J. Appl. Meteorol. 33: 1341–1353.Google Scholar
  107. Taconet, O., Bernard, R. and Vidal-Madjar, D. 1986a. Evapotranspiration over an agricultural region using a surface flux/temperature model based on NOAA-AVHRR data. J. Climate Appl. Meteorol. 25: 284–307.Google Scholar
  108. Taconet, O., Carlson, T., Bernard, R. and Vidal-Madjar, D. 1986b. Evaluation of a surface/vegetation parameterization using satellite measurements of surface temperature. J. Climate Appl. Meteorol. 25: 1752–1767.Google Scholar
  109. Tucker, C. J., Townshend, J. R. G. and Goff, T. E. 1985. African landcover classification using satellite remote sensing. Science 277: 369–375.Google Scholar
  110. Turner, M. G. and Gardner, R. H. 1991. Quantitative Methods in Landscape Ecology. Springer-Verlag, New York.Google Scholar
  111. Vidal, A. and Perrier, A. 1989. Analysis of a simplified relation for estimating daily evapotranspiration from satellite thermal IR data. Int. J. Remote Sensing 10(8): 1327–1337.Google Scholar
  112. Wilson, S. B. and Anderson, J. M. 1986. The applicability of LOWTRAN 5 computer code to aerial thermographic data collection. Int. J. Remote Sensing 7(3): 379–388.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Dale A. Quattrochi
    • 1
  • Jeffrey C. Luvall
    • 1
  1. 1.National Aeronautics and Space Administration, Global Hydrology and Climate Center, SD60George C. Marshall Space Flight Center, Marshall Space Flight CenterUSA

Personalised recommendations