Journal of Applied Phycology

, Volume 12, Issue 2, pp 105–112 | Cite as

Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment

  • P. Chevalier
  • D. Proulx
  • P. Lessard
  • W.F. Vincent
  • J. de la Noüe


As part of a program to develop biological wastewatertreatment systems for cold climate areas four strainsof filamentous, mat-forming cyanobacteria isolatedfrom Arctic and Antarctic environments were evaluatedfor their nutrient stripping and growth capabilities. A tropical strain, Phormidium bohneri, known forits excellent performance in wastewater treatment, wasused as a comparison. Experiments were done inartificial media under controlled batch cultureconditions to avoid interactions with indigenousmicroorganisms such as bacteria and protozoa. Theculture medium simulated real effluents containinghigh concentrations of nitrate and phosphate.Temperatures (5, 15 and 25°C) and irradiances(80, 210, 350, 640 and 1470 µmol photon m-2s-1) wereselected according to situations encountered in avariety of field conditions. For all irradiancelevels, growth was satisfactory at 15 and 25 °C,but limited at 5 °C. At 25 °C a satisfactory nitrogen removal rate (3.5and 4.0 mg N L-1d-1) was obtained forone polar strain (Phormidium tenue) and thecontrol P. bohneri. At 15 °C, the bestnitrogen removal rate (3.5 mg N L-1d-1)was measured with P. bohneri while the best ratefor the polar strains was around 2.3 mg NL-1d-1. At 15 °C, a phosphorusremoval rate of 0.6 mg P L-1d-1 wasobtained with P. bohneri and polar strains P. tenue and Oscillatoria O-210. Nitrogen(NO3-) and phosphorus (PO43-)uptake rates increased as a function of irradianceover the range 80 to 350 μmolphoton m-2s-1. Our results indicate thattertiary biological wastewater treatment at lowtemperatures (5 °C) cannot be anticipated withthe polar strains tested, because they arepsychrotrophic rather than psychrophilic and thus growtoo slowly under conditions of extreme cold. However, it appears that these cyanobacteria would beuseful for wastewater treatment at moderately cooltemperatures (c. 15 °C), which are commonduring spring and fall in northern climates.

Antarctica Arctic cyanobacteria nutrients Oscillatoria Phormidium subfuscum Phormidium bohneri Schizothrix calcicola tertiary treatment wastewater 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. APHA, American Public Health Association, American Water Works Association and Water Pollution Control Federation (1989) Standards Methods for the Examination of Water and Wastewater, Washington, DC.Google Scholar
  2. Blier R, Laliberté G, de la Noüe J (1996) Production of the cyanobacterium Phormidium bohneri in parallel with epuration of a dairy anaerobic effluent. Process Biochem. 31: 587-593.Google Scholar
  3. de la Noüe J, Laliberté G, Proulx D (1992) Algae and wastewater. J. appl. Phycol. 4: 247-254.Google Scholar
  4. de la Noüe J, Proulx D (1988) Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium sp. Appl. Microbiol. Biotechnol. 29: 292-297.Google Scholar
  5. Diamadopoulos E, Benedek A (1984) The precipitation of phosphorus from wastewater through pH variation in the presence and absence of coagulants. Wat. Res. 18: 1175-1179.Google Scholar
  6. Dumas A, Laliberté G, Lessard P, de la Noüe J (1998) Biotreatment of fish farm effluents using the cyanobacterium Phormidium bohneri. Aquacult. Engng 7: 57-68.Google Scholar
  7. Fay P (1983) The Blue-Greens. Edward Arnold Publishers Ltd, London, 87 pp.Google Scholar
  8. Hu Q, Westerhoff P, Vermaas W (2000) Removal of nitrate from groundwater by cyanobacteria: Quantitative assessment of factors influencing nitrate uptake. Appl. environ. Microbiol. 66: 133-139.Google Scholar
  9. Laliberté G, Lessard P, de la Noüe J, Sylvestre S (1997) Effect of phosphorus addition on nutrient removal from wastewater with the cyanobacterium Phormidium bohneri. Bioresource Technol. 59: 227-233.Google Scholar
  10. MENVIQ (1992) Détermination des nitrates et des nitrites. Méthode colorimétrique automatisée avec le sulfanilamide et le N.E.D. 87.06/303-NO3 1.1. Ministère de l'Environnement du Québec, Québec, 9 pp.Google Scholar
  11. Mespoulède V (1997) Sélection et étude d'une souche de cyanobactéries polaires pour l'épuration d'un effluent eutrophisant. M. Sc. Thesis, Université Laval, Québec, Canada, 56 pp.Google Scholar
  12. Morita RY (1975) Psychrophilic bacteria. Bact. Rev. 39: 144-167.Google Scholar
  13. Oswald W, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans. Am. Soc. Civ. Eng. 122: 73-105.Google Scholar
  14. Proulx D, Lessard P, de la Noüe J (1994) Traitement tertiaire d'un effluent domestique secondaire par culture intensive de la cyanobactérie Phormidium bohneri. Environ Technol. 15: 449-458.Google Scholar
  15. Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RY (1979) The cyanobacteria. J. gen. Microbiol. 111: 1-61.Google Scholar
  16. Roos JC, Vincent WF (1998) Temperature dependence of UV radiation effects on Antarctic cyanobacteria. J. Phycol. 34: 118-125.Google Scholar
  17. Sylvestre S, Lessard P, de la Noüe J (1996) Performance d'un photobioréacteur utilisant la cyanobactérie Phormidium bohneri pour l'enlèvement de l'azote et du phosphore. Environ. Technol. 17: 697-706.Google Scholar
  18. Talbot P, de la Noüe J (1988) Evaluation of Phormidium bohneri for solar biotechnology. In Stadler T, Mollion J, Verdus MC, Karamanos Y, Morvan H, Christiaen D (eds), Algal Biotechnology. Elsevier, London, pp. 403-411.Google Scholar
  19. Tang EPY, Tremblay R, Vincent WF (1997a) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude matformers adapted to low temperature? J. Phycol. 33: 171-181.Google Scholar
  20. Tang EPY, Vincent WF (1999) Strategies of thermal adaptation by high latitude cyanobacteria. New Phytol. 142: 315-323.Google Scholar
  21. Tang EPY, Vincent WF, Proulx D, Lessard P, de la Noüe J (1997b) Polar cyanobacteria versus green algae for tertiary waste-water treatment in cool climates. J. appl. Phycol. 9: 371-381.Google Scholar
  22. Tilzer MM (1987) Light-dependence of photosynthesis and growth in cyanobacteria: Implications for their dominance in eutrophic lakes. N. Z. J. Mar. Freshwat. Biol. 21: 401-412.Google Scholar
  23. Vincent WF (2000) Cyanobacterial dominance in the polar regions. In Whitton BA, Potts M (eds), Ecology of the Cyanobacteria: Their Diversity in Space and Time. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 321-340.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • P. Chevalier
    • 1
  • D. Proulx
    • 1
    • 2
  • P. Lessard
    • 1
    • 3
  • W.F. Vincent
    • 4
  • J. de la Noüe
    • 1
    • 5
  1. 1.Groupe de Recherche en Recyclage Biologique et Aquiculture(GREREBA)Canada
  2. 2.Département des sciences animalesCanada
  3. 3.Département de génie civilCanada
  4. 4.Département de biologieUniversité LavalSainte-FoyCanada
  5. 5.Département des sciences animalesCanada

Personalised recommendations