Journal of Paleolimnology

, Volume 24, Issue 2, pp 151–182 | Cite as

A paleoclimate record for the past 250,000 years from Summer Lake, Oregon, USA: II. Sedimentology, paleontology and geochemistry

  • Andrew Cohen
  • Manuel Palacios-Fest
  • Robert Negrini
  • Peter Wigand
  • Daniel Erbes
Article

Abstract

We have obtained a detailed paleoenvironmental record in the Summer Lake Basin, Oregon (northwestern Great Basin, US) spanning from 250ka-5 ka. This record is derived from core and outcrop sites extending from a proximal deltaic setting to near the modern depocenter. Lithostratigraphic, paleontologic (ostracodes and pollen) and geochemical indicators all provide evidence for hydroclimate and climate change over the study interval.Lithostratigraphic analysis of the Summer Lake deposits allows subdivision into a series of unconformity - or paraconformity-bound lithosomes. The unconformity and facies histories indicate that the lake underwent several major lake-level excursions through the Middle and Late Pleistocene. High stands occurred between ~200 and ~165 ka, between ~89 and 50 ka and between ~25 and 13 ka. Uppermost Pleistocene and Holocene sediments have been removed by deflation of the basin, with the exception of a thin veneer of late Holocene sediment. These high stands correspond closely with Marine Oxygen Isotope Stages 6, 4 and 2, within the margin of error associated with the Summer Lake age model. A major unconformity from ~158 ka until ~102 ka (duration varies between sites) interrupts the record at both core and outcrop sites.Lake level fluctuations, in turn are closely linked with TOC and salinity fluctuations, such that periods of lake high stands correlate with periods of relatively low productivity, fresher water and increased water inflow/evaporation ratios. Paleotemperature estimates based on palynology and geochemistry (Mg/Ca ratios in ostracodes) indicate an overall decrease in temperature from ~236 ka-165 ka, with a brief interlude of warming and drying immediately after this (prior to the major unconformity). This temperature decrease was superimposed on higher frequency variations in temperature that are not evident in the sediments deposited during the past 100 ka. Indicators disagree about temperatures immediately following the unconformity (~102-95 ka), but most suggest warmer temperatures between ~100-89 ka, followed by a rapid and dramatic cooling event. Cooler conditions persisted throughout most of the remainder of the Pleistocene at Summer Lake, with the possible exception of brief warm intervals about 27-23 ka. Paleotemperature estimates for the proximal deltaic site are more erratic than for more distal sites, indicative of short term air temperature excursions that are buffered in deeper water.Estimates of paleotemperature from Mg/Ca ratios are generally in good agreement with evidence from upland palynology. However, there is a significant discordance between the upland pollen record and lake indicators with respect to paleoprecipitation for some parts of the record. Several possibilities may explain this discordance. We favor a direct link between lake level and salinity fluctuations and climate change, but we also recognize the possibility that some of these hydroclimate changes in the Summer Lake record may have resulted from episodic drainage captures of the Chewaucan River between the Summer Lake and Lake Abert basins.

paleolimnology paleoclimate Great Basin ostracodes palynology Pleistocene Quaternary trace elements oxygen and carbon isotopes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allison, I. S., 1945. Pumice beds at Summer Lake, Oregon. Geol. Soc.of Amer. Bull. 56: 789-807.Google Scholar
  2. Allison, I., 1982. Geology of Pluvial Lake Chewaucan, Lake County, Oregon. Oregon State Univ. Press, 79pp.Google Scholar
  3. Antevs, E., 1948. The Great Basin with emphasis on Post-Glacial Times. Climate changes and pre-white man. University of Utah Bulletin 38: 167-191.Google Scholar
  4. Benson, L. V., J. P. Smoot, M. Kashgarian, A. Sarna-Wojcicki & J. W. Burdett, 1997. Radiocarbon ages and environments of deposition of the Wono and Trego Hot Springs tephra layers in the Pyramid Lake sub basin, Nevada. Quat. Res. 47: 251-260.Google Scholar
  5. Berger, G., J. O. Davis & R. M. Negrini, 1990. Thermoluminescence dating of tephra from Oregon and Nevada, INQUA-ICTCT Field Conference and Workshop on Tehprochronology, abstr., p. 3.Google Scholar
  6. Berger, G. W., 1991. The use of glass for dating volcanic ash by thermoluminescence. J. Geophy. Res. 96: 19, 705-719, 720.Google Scholar
  7. Berry, M., 1994. Soil-geomorphologic analysis of Late-Pleistocene glacial sequences in the McGee, Pine, and Bishop Creek Drainagees, East-Central Sierra Nevada, California. Quat. Res. 41: 160-175.Google Scholar
  8. Billings, W. D., 1951. Vegetation zonation in the Great Basin of western North America. In Les bases ecologiques de la regeneration de la vegetation des zones arides. International Colloquium. International Union of Biological Sciences, Series B. 9: 101-122.Google Scholar
  9. Birks, H. J. B. & A. D. Gordon, 1985. Numerical Methods in Quaternary Pollen Analysis. Academic Press, New York, 317 pp.Google Scholar
  10. Bischoff, J. L., R. J. Rosenbauer & G. I. Smith, 1985. Uranium series dating of sediments from Searles Lake, California: differences between continental and marine climate records. Science 227: 1222-1224.Google Scholar
  11. Bischoff, J. L., K. M. Menking, J. P. Fitts & J. A. Fitzpatrick, 1997. Climatic oscillations 10,000-155,000 yr B.P. at Owens Lake, CA, reflected in glacial rock flour abundance and lake salinity in core OL-92. Quat. Res. 48: 313-325.Google Scholar
  12. Bodergat, A. M., P. Carbonnel, M. Rio & D. Keyser 1993, Chemical composition of Leptocythere (Crustacea: Ostracoda) as influenced by winter metabolism and summer supplies. Marine Biology 117: 53-62.Google Scholar
  13. Botkin, S. & K. R. Carembelas, 1992a. Preliminary geomorphological and archaeological investigations. In Raven, C. & R. G. Elston (eds), Land and Life at Malheur Lake. Dept. of Interior (U.S.) Fish and Wildlife Service Region 1, Cultural Resource Series 8: 57-86Google Scholar
  14. Botkin S. & K. R. Carembelas, 1992b. Preliminary geomorphological and archaeological investigations. In Raven, C. & R. G. Elston (eds), Land and Life at Malheur Lake. Dept. of Interior (U.S.) Fish and Wildlife Service Region 1, Cultural Resource Series 8: 87-122.Google Scholar
  15. Bradbury, J. P., 1991. The late Cenozoic diatom stratigraphy and paleolimnology of Tule Lake, Siskiyou Co., California. J. Paleolim. 6:205-255.Google Scholar
  16. Chivas, A., P. De Deckker & J. M. G. Shelley, 1985. Strontium content of ostracods indicate lacustrine paleosalinity. Nature 316: 251-253.Google Scholar
  17. Chivas, A., P. De Deckker & J. M. G. Shelley, 1986. Magnesium and strontium in non-marine ostracod shells as indicators of palaeosalinity and palaeotemperature. Hydrobiologia 143: 135-142.Google Scholar
  18. COHMAP Members, 1988. Climatic changes in the last 18,000 years. Observations and model simulations. Science 241: 1043-1052.Google Scholar
  19. Conrad, C. F., 1953. Geology of the Ana River section, Summer Lake, Oregon, M.S. Thesis, Oregon State Univ., 92pp.Google Scholar
  20. Davis, J. O., 1985. Correlation of Late Quaternary tephra layers in a long pluvial sequence near Summer Lake, Oregon. Quat. Res. 23: 38-53.Google Scholar
  21. Davis, O. K., 1987. Spores of the dung fungus Sporormiella: increased abundance in historic sediments and before Pleistocene megafaunal extinction. Quat. Res. 28: 290-294.Google Scholar
  22. De Deckker, P. & R. M. Forester, 1988. The use of ostracodes to reconstruct continental palaeoenvironmental records. In De Deckker, P. J., P. Colin & J.-P. Peypouquet (eds), Ostracoda In The Earth Sciences. Elsevier, New York, pp. 175-200.Google Scholar
  23. DeLagarra, I., E. S. Andreu-Moliner, R. Montoro & A. Núñez-Cachaza, 1985. Influence of ambient temperature on the concentration of calcium, magnesium, sodium and potassium in the haemolymph and urine of Procambrus clarkii. Revista Española de Fisiología 41: 325-330.Google Scholar
  24. Easterbrook, D., 1986. Stratigraphy and chronology of Quaternary deposits of the Puget Lowlands and Olympic Mountains of Washington and the Cascade Mountains of Washington and Oregon. In Sibrava, V., D. Q. Bowen & G. M. Richmond (eds), Quaternary Glaciations in the Northern Hemisphere. Quat. Sci. Rev. 5: 135-159.Google Scholar
  25. Engstrom, D. & S. Nelson, 1991. Paleosalinity from trace metals in fossil ostracodes compared with observational records at Devils Lake, North Dakota, USA. Palaeogeogr. Palaeoclim. & Palaeoecol. 83: 295-312.Google Scholar
  26. Faegri, K., 1966. A botanical excursion to Steens Mountain, S.E. Oregon, U.S.A. Saertrykk av Blyttia 24: 173-181.Google Scholar
  27. Forester, R. M., 1985. Limnocythere bradburyi n. sp.: A modern ostracode from Central Mexico and a possible Quaternary paleoclimate indicator. J. Paleontol. 59: 8-20.Google Scholar
  28. Forester, 1991. Ostracode assemblages from springs in the western United States: implications for paleohydrology. Mem. Ent. Soc. Canada. 155: 181-201.Google Scholar
  29. Freidel, D. E., 1993. Chronology and climatic controls of Late Quaternary lake level fluctuations in Chewaucan, Fort Rock, and Alkali Basins, South Central Oregon. Ph.D. disserta-tion, Dept. of Geography, Univ. of Oregon, Eugene OR. 244 pp.Google Scholar
  30. Fullerton, D. S., 1986. Chronology and correlation of glacial deposits in the Sierra Nevada, California. In Sibrava, V., D. Q. Bowen & G. M. Richmond (eds), Quaternary Glaciations in the Northern Hemisphere. Quat. Sci. Rev. 5: 161-169.Google Scholar
  31. Given, K. & B. Wilkinson, 1985. Kinetic control of morphology, composition, and mineralogy of abiotic sedimentary carbonates. J. Sed. Petrol. 55: 109-119.Google Scholar
  32. Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen & J. Jouzel, 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores, Nature 366: 552-554.Google Scholar
  33. Herrero-Bervera, E., C. E. Helsley, A. M. Sarna-Wojcicki, K. R. Lajoie, C. E. Meyer, B. E. Turin, J. M. Donelly-Nolan, M. O. McWilliams, R. M. Negrini & J. C. Liddicoat, 1994. Age and correlation of a paleomagnetic episode in the western United States by 40Ar/39Ar dating and tephrochronology: The Jamaica, Blake, or a new polarity episode? J. Geophys. Res. 99: 24, 91-124, 103.Google Scholar
  34. Lund, S. P., J. C. Liddicoat, K. L. Lajoie, T. L. Heyney & S. Robinson, 1988. Paleomagnetic evidence for long term (104 yr) memory and periodic behavior of the Earth's core dynamo process. Geophys. Res. Lett. 15: 1101-1104.Google Scholar
  35. Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore & N. J. Shackleton, 1987. Age dating and the orbital theory of the ice ages: Development of a high resolution 0 to 300,000 year chronostratigraphy. Quat. Res. 27: 1-30.Google Scholar
  36. Mehringer, P. J., Jr. 1967. Pollen analysis of the Tule Springs Area, Nevada. pp. 129-200. In Wormington, H. M. & D. Ellis (eds), Pleistocene Studies in Southern Nevada. Nevada State Museum Anthropological Papers 13. Carson City, Nevada.Google Scholar
  37. Menking, K. M., J. L. Bischoff, J. A. Fitzpatrick, J. W. Burdette & R. O. Rye, 1997. Climatic/hydrologic oscillations since 155,000 yr. B.P. at Owens Lake, CA, reflected in abundance and stable isotope composition of sediment carbonate. Quat. Res. 48: 58-68.Google Scholar
  38. Negrini, R. M., K. Verosub & J. O. Davis, 1988. The middle to late Pleistocene geomagnetic field recorded in fine-grained sediments from Summer Lake, Oregon, and Double Hot Springs, Nevada, U.S.A. Earth Planet Sci. Lett. 87: 173-192.Google Scholar
  39. Negrini, R.M. & J. O. Davis, 1992. Dating late Pleistocene pluvial events and tephras by correlating paleomagnetic secular variation records from the western Great Basin. Quat. Res. 38: 46-59.Google Scholar
  40. Negrini, R. M., D. B. Erbes, A. P. Roberts, K. L. Verosub, A. M. Sarna-Wojcicki & C. Meyer, 1994. Repeating waveform initiated by a 180-190 ka geomagnetic excursion in western North America: Implications for field behavior during polarity transitions and subsequent secular variation. J. Geophys. Res. 99: 24, 105-124, 119.Google Scholar
  41. Negrini, R. M., 2000. Pluvial lake sizes in the northwestern Great Basin throughout the Quaternary Period. In Currey, D., D. Madsen & R. Herschler (eds), Great Basin Aquatic Systems History. 82 pp.Google Scholar
  42. Negrini, R. M., D. B. Erbes, K. Faber, A. M. Herrera, A. P. Roberts, A. S. Cohen, P. E. Wigand & F. F. Foit, 2000. A paleoclimate record for the past 250,000 years from Summer Lake, Oregon, USA: I. Chronology and magnetic proxies for lake level. J. Paleolim. 24: 125-149.Google Scholar
  43. Oregon Climate Service, 1993. Weather Data From Summer Lake Weather Station, Oregon Climate Sevice, Oregon State University, Corvallis, OR.Google Scholar
  44. Oviatt, C. G., W. D. McCoy & R. G. Reider, 1987. Evidence for a shallow early or middle Wisconsin-age lake in the Bonneville Basin, Utah. Quat. Res. 27: 248-262.Google Scholar
  45. Palacios-Fest, M., 1994. Trace element shell chemistry of continental ostracodes and the applicability of experimentally-derived multiple regression models to paleoenvironmental reconstruction in southwestern North America. Ph.D. dissertation, Univ. of Arizona, 279 pp.Google Scholar
  46. Palacios-Fest, M., 1996, Geoquímica de la concha de ostrácodos (Limnocythere staplini) un método de regressión múltiple como indicador paleoclimático. Geosci. 16: 130-136.Google Scholar
  47. Palacios-Fest, M., A. Cohen, J. Ruiz & B. Blank, 1993. Comparative paleoclimatic interpretations from nonmarine ostracodes using faunal assemblages, trace element shell chemistry and stable isotope data. In Swart, P. K., K. C. Lohman, J. McKenzie & S. Savin (eds), Climate Change in Continental Isotopic Records. Am. Geophys. Union Geophys. Mono. 78: 179-190.Google Scholar
  48. Palacios-Fest, M. R., A. L. Carreño, J. R. Ortega-Ramirez & G. Alvarado-Valdéz (in review) Ostracode trace element shell chemistry: A high resolution paleoenvironmental reconstruction of Laguna Babícora, Chihuahua, Mexico. J. Paleolim. (submitted).Google Scholar
  49. Phillips, F. M., M. G. Zreda, L. V. Benson, M. A. Plummer, D. Elmore & P. Sharma, 1996. Chronology for fluctuations in Late Pleistocene Sierra Nevada glaciers and lakes. Science 274: 749-751.Google Scholar
  50. Quade, J., M. D. Miflin, W. L. Pratt, W. McCoy & L. Burckle, 1995. Fossil spring deposits in the southern Great Basin and their implications for changes in water table levels near Yucca Mountain, Nevada, during Quaternary time. Geol. Soc. Amer. Bull. 107: 213-230.Google Scholar
  51. Quade, J., R. M. Forester, W. L. Pratt & C. Carter, 1998. Black mats, spring fed streams and late Glacial age recharge in the southern Great Basin. Quat. Res. 49: 129-148.Google Scholar
  52. Rasmussen, K. A., R. D. Ricketts, T. C. Johnson & V. V. Romanovsky, 1999. Late Quaternary sedimentation of Lake Issyk-Kul, Kyrgyzstan: An 8,000 year record of deposition and central Asian climate change. LENNOU, 2nd International Congress of Limnogeology, Brest, France, abstr. w/prog. pp. 57-58.Google Scholar
  53. Rosenthal, Y. & A. Katz, 1989. The applicability of trace elements in freshwater shells for paleogeochemical studies. Chem. Geol. 78: 65-76.Google Scholar
  54. Richmond, G. M., 1986. Stratigraphy and chronology of glaciations in Yellowstone National Park. In Sibrava, V., D. Q. Bowen & G. M. Richmond (eds), Quaternary Glaciations in the Northern Hemisphere. Quat. Sci. Rev. 5: 83-98.Google Scholar
  55. Sarna-Wojcicki, A. M., C. E. Meyer, D. P. Adam & J. D. Sims, 1988. Correlations and age estimates of ash beds in upper Pleistocene sediments of Clear Lake, California. In Sims, J. D. (ed.), Late Quaternary Climate, Tectonism and Sedimentation of Clear Lake, Northern California Coast Ranges. Geol. Soc. Amer. Special Paper 214, pp. 141-150.Google Scholar
  56. Sharpe, S. E., 1998. Using lake, spring and wetland mollusks as indicators of modern and paleo-hydrochemistry. Ph.D. dissertation, Univ. of Nevada, Reno, 148 pp.Google Scholar
  57. Smith, G. I., V. J. Barczak, G. F. Moulton & J. C. Liddicoat, 1983. Core KM-3, a surface to bedrock record of late Cenozoic sedimentation in Searles Valley, California. U.S. Geol. Sur. Prof. Paper 1256, 24 pp.Google Scholar
  58. Smith, G. I. & J. I. Bischoff (eds.) 1993. Core OL-92 from Owens Lake, southeastern California. U.S. Geol. Sur. Open File Report 93.683, 398 pp.Google Scholar
  59. Stockmarr, J., 1971. Tablets with spores used in absolute pol len analysis. Pollen Spores 13: 614-621.Google Scholar
  60. Szabo, B. J., P. T. Kolesar, A. C. Riggs, I. J. Winograd & K. R. Ludwig, 1994. Paleoclimatic inferences from a 120,000-yr calcite record of water-table fluctuation in Browns Room of Devils Hole, Nevada. Quat. Res. 41: 59-69.Google Scholar
  61. Talbot, M. R. & K. Kelts, 1990. Paleolimnological signatures from carbon and oxygen isotopic ratios from organic carbon-rich lacustrine sediments. In Katz, B. (ed.), Lacustrine Basin Exploration: Case Studies And Modern Analogs. Amer. Ass. Petrol. Geol. Memoir 50: 99-112.Google Scholar
  62. Thompson, R. S., C. Whitlock, P. J. Bartlein, S. P. Harrison & W. G. Spaulding, 1993. Chapter 18: Climatic changes in the western United States since 18,000 yr. B.P. In Wright, H. E., J. E. Kutzbach, T. Webb, W. F. Ruddiman, F. A. Street-Perott & P. J. Bartlein (eds), Global Changes Since The Last Glacial Maximum. Univ. of Minnesota Press, Minneapolis, pp. 468-513.Google Scholar
  63. Whitlock, C. & Bartlein, P.J., 1997. Vegetation and climate change in northwest America during the past 125 kyr. Nature 388: 57-61.Google Scholar
  64. Wigand, P. & D. Rhode, submitted. Great Basin vegetation history and aquatic systems: The last 150,000 years. In Currey, D., D. Madsen & R. Herschler (eds), Great Basin Aquatic Systems History. 71 pp.Google Scholar
  65. Winograd, I., T. B. Coplen, J. M. Landwehr, A. C. Riggs, K. R. Ludwig, B. J. Szabo, P. T. Kolesar & K. M. Revesz, 1992. Continuous 500,000 year climate record from vein calcite in Devils Hole, Nevada. Science 258: 255-260.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Andrew Cohen
    • 1
  • Manuel Palacios-Fest
    • 1
  • Robert Negrini
    • 2
  • Peter Wigand
    • 3
  • Daniel Erbes
    • 2
  1. 1.Department of GeosciencesUniversity of ArizonaTucsonUSA
  2. 2.Department of Physics and GeologyCalifornia State UniversityBakersfieldUSA
  3. 3.Desert Research InstituteFormerly of the Quaternary Sciences CenterRenoUSA

Personalised recommendations