Skip to main content
Log in

Construction of a full three-dimensional model of the transpeptidase domain of Streptococcus pneumoniae PBP2x starting from its Cα-atom coordinates

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

A new method is described for generating all-atom protein structures from Cα-atom information. The method, which combines both local structural trace alignments and comparative side chain modeling with ab initio side chain modeling, makes use of both the virtual-bond and the dipole-path methods. Provided that 3D structures of structurally and functionally related proteins exist, the method presented here is highly suitable for generating all-atom coordinates of partly solved, low-resolution crystal structures. Particularly the active site region can be modeled accurately with this procedure, which enables investigation of the binding modes of different classes of ligands with molecular dynamics simulations. The method is applied to the trace of Streptococcus pneumoniae, in order to construct an all-atom structure of the transpeptidase domain. Since after generation of full coordinates of the transpeptidase domain the structure had been solved to 2.4 Å resolution, new X-ray coordinates for the worst modeled loop (residues T370 to M386; 17 out of a total number of 351 residues constituting the transpeptidase domain) were incorporated, as kindly provided by Dr. Dideberg. The structure was relaxed with molecular dynamics simulations and simulated annealing methods. The RMS deviation between the 144 aligned Cα-atoms and the corresponding ones in the originally solved 3.5 Å resolution crystal structure was 0.98. The 351 Cα-atoms of the whole transpeptidase domain of the final model showed an RMS deviation of 1.58. The Ramachandran plot showed that 79.3% of the residues are in the most favored regions, with only 1.0% occurring in disallowed regions. The model presented here can be used to investigate the three-dimensional influences of mutations around the active site of PBP2x.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moult, J., Curr. Opin. Biotechnol., 10 (1999) 583.

    Google Scholar 

  2. Moult, J., Hubbard, T., Fidelis, K. and Pedersen, J.T., Proteins Struct. Funct. Genet., Suppl. 3 (1999) 2.

    Google Scholar 

  3. Schäfer, L., Cao, M. and Meadows, M.J., Biopolymers, 35 (1995) 603.

    Google Scholar 

  4. Schäfer, L. and Cao, M., J. Mol. Struct., 33 (1995) 201.

    Google Scholar 

  5. Jiang, X., Cao, M., Teppen, B., Newton, S.Q. and Schäfer, L., J. Phys. Chem., 99 (1995) 10251.

    Google Scholar 

  6. Jian, G.X., Cao, M., Newton. S.Q. and Schäfer, L., Electronic J. Theor. Chem., 1 (1995) 11.

    Google Scholar 

  7. Gan, K., Alexander, P., Coxon, J.M., McKinnon, A.J. and Worth, G.H., Biopolymers, 41 (1997) 381.

    Google Scholar 

  8. Gan, K., Alexander, P., Coxon, J.M., McKinnon, A.J. and Worth, G.H., Biopolymers, 41 (1997) 367.

    Google Scholar 

  9. Milik, M., Kolinski, A. and Skolnick, J., J. Comput. Chem., 18 (1997) 80.

    Google Scholar 

  10. Jones, T.A. and Thirup, S., EMBO J., 5 (1986) 819.

    Google Scholar 

  11. Reid, L.S. and Thornton, J.M., Proteins Struct. Funct. Genet., 5 (1989) 170.

    Google Scholar 

  12. Holm, L. and Sander, C., J. Mol. Biol., 218 (1991) 183.

    Google Scholar 

  13. Purissima, E.O. and Scheraga, H.A., Biopolymers, 23 (1984) 1207.

    Google Scholar 

  14. Rackovsky, S. and Scheraga, H.A., Macromolecules, 11 (1978) 1168.

    Google Scholar 

  15. Rackovsky, S. and Scheraga, H.A., Macromolecules, 13 (1980) 1440.

    Google Scholar 

  16. Wako, H. and Scheraga, H.A., J. Protein Chem., 1 (1982) 5.

    Google Scholar 

  17. Wako, H. and Scheraga, J.A., J. Protein Chem., 1 (1982) 85.

    Google Scholar 

  18. Dill, K.A., Biochemistry, 29 (1990) 7133.

    Google Scholar 

  19. Liwo, A., Pincus, M.R., Wawak, R.J., Rackovsky, S. and Scheraga, H.A., Protein Sci., 2 (1993) 1679.

    Google Scholar 

  20. Nishikawa, K., Momany, F.A. and Scheraga, H.A., Macromolecules, 7 (1974) 797.

    Google Scholar 

  21. Claessens, M., Van Cutsem, E., Lasters, I. and Wodak, S., Protein Eng., 2 (1989) 335.

    Google Scholar 

  22. Levitt, M., J. Mol. Biol., 226 (1992) 507.

    Google Scholar 

  23. Correa, P.E., Proteins, 7 (1990) 366.

    Google Scholar 

  24. Rey, A. and Skolnick, J., J. Comput. Chem., 13 (1992) 443.

    Google Scholar 

  25. Charlier, P., Buisson, G., Dideberg, O., Wierenga, J., Keck, W., Laible, G. and Hakenbeck, R., J. Mol. Biol., 232 (1993) 1007.

    Google Scholar 

  26. Pares, S., Mouz, N., Pétillot, Y., Hakenbeck, R. and Dideberg, O., Nat. Struct. Biol., 3 (1996) 284.

    Google Scholar 

  27. Gordon, E., Mouz, N., Di Guilmi, A.M., Martin, L., Duee, E., Vernet, T. and Dideberg, O., Sectoral Meeting: ‘Controlling the Proliferation of the Microbial Cell Factory’, Verona, Italy, April 19-21, 1999.

  28. Ghuysen, J.-M., Annu. Rev. Microbiol., 45 (1991) 37.

    Google Scholar 

  29. Ghuysen, J.-M. and Dive, G., In R. Hakenbeck and J.-M. Ghuysen (Eds.) Bacterial CellWall, New Comprehensive Biochemistry, Vol. 27, Elsevier, Amsterdam, 1994, pp. 103–129.

    Google Scholar 

  30. Laible, G. and Hakenbeck, R., J. Bacteriol., 173 (1991) 6986.

    Google Scholar 

  31. Insight II, Molecular Simulations Incorporated, Version 97.0, Biosym/MSI, San Diego, CA, USA.

  32. Payne, P.W., Protein Sci., 2 (1993) 315.

    Google Scholar 

  33. Dayhoff, M.O., Barker, W.C. and Hunt, L.T., Methods Enzymol., 91 (1983) 524.

    Google Scholar 

  34. Needleman, S.B. and Wunsch, C.D., J. Mol. Biol., 48 (1970) 443.

    Google Scholar 

  35. Mouz, N., Gordon, E., DiGuilmi, A.-M., Petit, I., Petillot, Y., Dupont, Y., Hakenbeck, R., Vernet, T. and Dideberg, O., Proc. Natl. Acad. Sci. USA, 95 (1998) 13403.

    Google Scholar 

  36. Dideberg, O., personal communication.

  37. Bates, P.A. and Sternberg, M.J.E., Proteins Struct. Funct. Genet., Suppl. 3 (1999) 47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Hooft, P.A., Höltje, HD. Construction of a full three-dimensional model of the transpeptidase domain of Streptococcus pneumoniae PBP2x starting from its Cα-atom coordinates. J Comput Aided Mol Des 14, 719–730 (2000). https://doi.org/10.1023/A:1008164914993

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008164914993

Navigation