Journal of Paleolimnology

, Volume 24, Issue 2, pp 125–149 | Cite as

A paleoclimate record for the past 250,000 years from Summer Lake, Oregon, USA. 1. chronology and magnetic proxies for lake level

  • Robert Negrini
  • Daniel Erbes
  • Karin Faber
  • Adam Herrera
  • Andrew Roberts
  • Andrew Cohen
  • Peter Wigand
  • Franklin Foit
Article

Abstract

This study presents the age control and environmental magnetism components of a new, late Pleistocene paleoclimate record for the Great Basin of western North America. Two new cores from the Summer Lake sub-basin of pluvial Lake Chewaucan, Oregon, USA are correlated to basin margin outcrops on the basis of tephrochronology, lithostratigraphy, sediment magnetism and paleomagnetic secular variation. Eleven tephra layers were found in the cores that correlate to tephra identified previously in the outcrop. The Olema ash was also found in one of the cores; its stratigraphic position, relative to 3 dated tephra layers, indicates that its age is 50-55 ka, somewhat younger than has been previously reported. The Summer Lake sediments are divided into deep and shallow lake lithosomes based on sedimentary features. The stratigraphic position of these lithosomes support the tephra-based correlations between the outcrop and the cores. These sediments contain a well resolved record of the Mono Lake Excursion (MLE) and an earlier paleomagnetic excursion as well as a high quality replication of the paleosecular variation immediately above the MLE.

Relative sedimentation rates increased dramatically toward the depocenter during intervals of low-lake level. In contrast, during intervals of high-lake level, relative sedimentation rates were comparable along the basin axis from the basin margin to the depocenter. The magnetic mineralogy of the Summer Lake sediments is dominated by pseudo-single domain (titano)magnetite and intervals of high/low magnetite concentration coincide with lithosomes that indicate high/low lake levels. Magnetic grain size also varies in accord with bulk sediment grain size as indicated by the silt/clay ratio. To a first order, variations in magnetic parameters, especially those attributable to the concentration of magnetic minerals, correlate well with global glacial/interglacial oscillations as indicated by marine oxygen isotope stages. This relationship can be explained by increased dissolution of (titano)magnetite minerals as lake level dropped and the lake became more productive biologically. This inference is supported by a correspondence between lower concentrations of magnetite with higher levels of total organic carbon and vice-versa.

paleolimnology paleoclimate Great Basin environmental magnetism paleomagnetic secular variation pleistocene quaternary 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adam, D. P., A. M. Sarna-Wojcicki, H. J. Rieck, J. P. Bradbury, W. E. Dean & R. M. Forester, 1989. Tulelake, California: The last 3 million years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 72: 89-103.Google Scholar
  2. Allison, I. S., 1982. ‘Geology of Pluvial Lake Chewaucan, Lake County, Oregon.’ Oregon State University Studies in Geology 11.Google Scholar
  3. Anson, G. L. & K. P. Kodama, 1987. Compaction-induced shallowing of the post-depositional remanent magnetization in a synthetic sediment. Geophys. J. Int. 88: 673-692.Google Scholar
  4. Antevs, E., 1948. The Great Basin with emphasis of glacial and postglacial times: Climatic changes and pre-white man. Univers. Utah Bull. 38: 167-191.Google Scholar
  5. Arason, P. & S. Levi, 1990a. Models of inclination shallowing during sediment compaction, J. Geophys. Res. 95: 4481-4499.Google Scholar
  6. Arason, P. & S. Levi, 1990b. Compaction and inclination shallowing in deep-sea sediments from the Pacific Ocean. J. Geophys. Res. 95: 4501-4510.Google Scholar
  7. Bacon, C. R., 1983. Eruptive history of Mount Mazama and Crater Lake caldera, Cascade Range, U.S.A. J. Volcanol. Geotherm. Res. 18: 57-115.Google Scholar
  8. Baldwin, E. M., 1981. ‘Geology of Oregon.’ Kendal/Hunt, Dubuque, Iowa: 170 pp.Google Scholar
  9. Banfield, J. F., B. F. Jones & D. R. Veblen, 1991. An AEMTEM study of weathering and diagenesis, Abert Lake, Oregon: II. Diagenetic modification of the sedimentary assemblage. Geochem. Cosmochem. Acta 55: 2795-2810.Google Scholar
  10. Benson, L. V., D. R. Currey, R. I. Dorn, K. R. Lajoie, C. G. Oviatt, S. W. Robinson, G. I. Smith & S. Stine, 1990. Chronology of expansion and contraction of four Great Basin lake systems during the past 35,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 78: 241-286.Google Scholar
  11. Benson, L. V., J. P. Smoot, M. Kashgarian, A. Sarna-Wojcicki & J. W. Burdett, 1997. Radiocarbon ages and environ-ments of deposition of the Wono and Trego Hot Springs Tephra layers in the Pyramid Lake sub basin, Nevada. Quat. Res. 47: 251-260.Google Scholar
  12. Berger, G. W., 1991. The use of glass for dating volcanic ash by thermoluminescence. J. Geophys. Res. 96: 19, 705-720.Google Scholar
  13. Berger, G. W. & A. J. Busacca, 1995. Thermoluminescence dating of late Pleistocene loess and tephra from eastern Washington and southern Oregon and implications for the eruptive history of Mount St. Helens. J. Geophys. Res. 100: 22, 361-322, 374.Google Scholar
  14. Borchardt, G. A., P. J. Aruscavage & H. T. Millards Jr., 1972. Correlation of the Bishop ash, a Pleistocene marker bed, using instrumental neutron activation analysis. J. Sed. Petrol. 42: 301-306.Google Scholar
  15. Celaya, M. & B. M. Clement, 1988. Inclination shallowing in deep-sea sediments from the north Atlantic. Geophys.Res. Lett. 15: 52-55.Google Scholar
  16. Channell, J. E. T., in press. Geomagnetic paleointensity and directional secular variation at ODP Site 984 (Bjorn Drift) since 500 ka: Comparisons with ODP Site 983 (Gardar Drift). J. Geophys. Res.Google Scholar
  17. Clement, B. M., 1991. Geographical distribution of transitional VGPs: Evidence for non-zonal equatorial symmetry during the Matuyama-Brunhes geomagnetic reversal. Earth Planet. Sci. Lett. 104: 239-256.Google Scholar
  18. Cohen, A. S., M. R. Palacios-Fest, R. M. Negrini, P. E. Wigand & D. B. Erbes, 2000. A paleoclimate record for the past 250,000 years from Summer Lake, Oregon, USA. II. Sedimentology, paleontology and geochemistry. J. Paleolim. 24: 151-181.Google Scholar
  19. Conway, F. M., J. F. Diehl, W. I. Rose & O. Matías, 1994. Age and magma flux of Santa María Volcano, Guatemala: Correlation of paleomagnetic waveforms with the 28,000 to 25,000 yr B.P. Mono Lake Excursion. J. Geol. 102: 11-24.Google Scholar
  20. Dansie, A. J., J. O. Davis & T. W. Stafford, Jr., 1988. The Wizard's Beach Recession: Farmdalian (25,500 yr B.P.) Vertebrate Fossils Co-Occur with Early Holocene Artifacts. In Willig, J. A., C. M. Aikens & J. L. Fagan, (eds), Early Human Occupation in Far Western North America: The Clovis-Archaic Interface, Anthropological Papers Number 21: 153-200, Nevada State Museum, Carson City.Google Scholar
  21. Davis, J. O., 1985. Correlation of late Quaternary tephra layers in a long pluvial sequence near Summer Lake, Oregon. Quat. Res. 23: 38-53.Google Scholar
  22. Day, R., M. Fuller & V. A. Schmidt, 1977. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence, Phys. Earth Planet. Inter. 13: 260-267.Google Scholar
  23. Deamer, G. A. & K. P. Kodama, 1990. Compaction-induced inclination shallowing in synthetic and natural clay-rich sediments. J. Geophys. Res. 95: 4511-4530.Google Scholar
  24. Donath, F. A., 1962. Analysis of Basin-Range structure, southcentral Oregon. Geol. Soc. Am. Bull. 73: 1-16.Google Scholar
  25. Erbes, D. B., 1996. ‘Late Pleistocene Lithostratigraphy of Pluvial Lake Chewaucan, Oregon: Implications for Past Climate Variation.’ M. S. Thesis, Dept. Geol., Cal. State Univ. Bakers.: 108 pp.Google Scholar
  26. Foit Jr., F. F., P. J. Mehringer & J. C. Sheppard, 1993. Age, distribution and stratigraphy of Glacier Peak tephra in eastern Washington and western Montana, United States. Can. J. Earth Sci. 30: 535-552.Google Scholar
  27. Grayson, D. K., 1993. ‘The Desert's Past: A Natural Pre-History of the Great Basin.’ Smithsonian Institution Press, Washington: 356 pp.Google Scholar
  28. Grootes, P. M., M. Stuiver, J. W. C. White, S. Johnsen & J. Jouzel, 1993. Comparison of oxygen isotope records from the GISP2 and GRIP Greenland ice cores. Nature 366: 552-554.Google Scholar
  29. Heider, F., A. Zitzelsberger & K. Fabian, 1996. Magnetic susceptibility and remanent coercive force in grown magnetite crystals from 0.1 µm to 6 mm. Phys. Earth Planet. Inter. 93: 239-256.Google Scholar
  30. Henyey, S., S. P. Lund, M. Scwharz & L. Keigwin, 1995. Paleomagnetic secular variation records from deep-sea sediments of the Blake/Bahama Outer Ridge (North Atlantic Ocena) during oxygen-isotope Stages 5 and 6 (70-190 ka)-Further evidence for the relationship between excursions and ‘normal’ secular variation. EOS (Trans. Am. Geophys. Un.) 76: F165.Google Scholar
  31. Herrero-Bervera, E., C. E. Helsley, A. M. Sarna-Wojcicki, K. R. Lajoie, C. E. Meyer, B. E. Turin, J. M. Donelly-Nolan, M.O. McWilliams, R. M. Negrini & J. C. Liddicoat, 1994. Age and correlation of a paleomagnetic episode in the western United States by 40Ar/39Ar dating and tephrochronology: The Jamaica, Blake, or a new polarity episode? J. Geophys. Res. 99: 24,091-24,103.Google Scholar
  32. Jelinowska, A., P. Tucholka, F. Gasse & J. C. Fontes, 1995. Mineral magnetic record of environment in Late Pleistocene and Holocene sediments, Lake Manas, Xinjiang, China. Geophys. Res. Lett. 22: 953-956.Google Scholar
  33. Karlin, R., 1990. Magnetite diagenesis in marine sediments from the Oregon continental margin. J. Geophys. Res. 95: 4405-4419.Google Scholar
  34. Laj, C., A. Mazaud, R. Weeks, M. Fuller & E. Herrero-Bervera, 1991. Geomagnetic reversal paths. Nature 351: 447.Google Scholar
  35. Lehman, B., C. Laj, C. Kissel, A. Mazaud, M. Paterne & L. Labeyrie, 1996. Relative changes of the geomagnetic field intensity during the last 280 kyear from piston cores in the Açores area. Phys. Earth Planet. Int. 93: 269-284.Google Scholar
  36. Leslie, B. W., S. P. Lund & D. E. Hammond, 1990. Rock magnetic evidence for the dissolution and authigenic growth of magnetic minerals within anoxic marine sediments of the California Continental Borderland. J. Geophys. Res. 95: 4437-4452.Google Scholar
  37. Levi, S. & R. Karlin, 1989. A sixty thousand year paleomagnetic record from Gulf of California sediments: Secular variation, late Quaternary excursions and geomagnetic implications. Earth & Planet. Sci. Lett. 92: 219-233.Google Scholar
  38. Levi, S. & S. K. Banerjee, 1990. On the origin of inclination shallowing in redeposited sediments. J. Geophys. Res. 95: 4383-4389.Google Scholar
  39. Lund, S. P., J. C. Liddicoat, K. L. Lajoie, T. L. Henyey & S. Robinson, 1988. Paleomagnetic evidence for long-term (104 year) memory and periodic behavior of the Earth's core dynamo process. Geophys. Res. Lett. 15: 1101-1104.Google Scholar
  40. Martinson, D. G., N. G. Pisias, J. D. Hays, J. Imbrie, T. C. Moore Jr. & N. J. Shackleton, 1987. Age dating and the orbital theory of the ice ages: Development of a highresolution 0 to 300,000-year chronostratigraphy. Quat. Res. 27: 1-29.Google Scholar
  41. McWilliams, M., 1995. Global correlation of the 223 ka Pringle Falls event, EOS. Trans. Am. Geophys. Un. 76: S99.Google Scholar
  42. Mix, A. C., 1987. The oxygen-isotope record of glaciation. In Ruddiman, W. F. & H. E. Wright Jr. (eds), North America and Adjacent Oceans During the Last Deglaciation. Geol. Soc. Am. DNAG Series K3: 111-136.Google Scholar
  43. Morrison, R. B., 1991. Quaternary stratigraphic, hydrologic, and climatic history of the Great Basin, with emphasis on Lakes Lahontan, Bonneville, and Tecopa. In Morrison, R. B. (ed), Quaternary Nonglacial Geology: Conterminous U.S., The Geology of North America. Geol. Soc. Am. DNAG Series K12: 283-317.Google Scholar
  44. Negrini, R. M., in press. Pluvial lake-sizes in the northwestern Great Basin throughout the Quaternary Period. In Currey, D. R., R. Herschler & D. B. Madsen (eds), Great Basin Aquatic Systems History. Smithsonian Press.Google Scholar
  45. Negrini, R. M. & J. O. Davis, 1992. Dating late Pleistocene pluvial events and tephras by correlating paleomagnetic secular variation records from the western Great Basin. Quat. Res. 38: 46-59.Google Scholar
  46. Negrini, R. M., J. O. Davis & K. L. Verosub, 1984. Mono Lake geomagnetic excursion found at Summer Lake, Oregon. Geology 12: 643-646.Google Scholar
  47. Negrini, R. M., K. L. Verosub & J. O. Davis, 1988. The middle to late Pleistocene geomagnetic field recorded in finegrained sediments from Summer Lake, Oregon, and Double Hot Springs, Nevada, U.S.A. Earth & Planet. Sci. Lett. 87: 173-192.Google Scholar
  48. Negrini, R. M., D. B. Erbes, A. P. Roberts, K. L. Verosub, A. M. Sarna-Wojcicki & C. Meyer, 1994. Repeating waveform initiated by a 180-190 ka geomagnetic excursion in western North America: Implications for field behavior during polarity transitions and subsequent secular variation. J. Geophys. Res. 99: 24, 105-124, 119.Google Scholar
  49. Oviatt, C. G., D. R. Currey & D. Sack, 1992. Radiocarbon chronology of Lake Bonneville, eastern Great Basin, USA. Palaeogeog. Palaeoclimatol. Palaeoecol. 99: 225-241.Google Scholar
  50. Palacios-Fest, M. R., A. S. Cohen, J. Ruiz & B. Blank, 1993. Comparative paleoclimatic interpretations from nonmarine ostracodes using faunal assemblages, trace element shell chemistry and stable isotope data. In Swart, P., K. Lohman, J. McKenzie & S. Savin (eds), Climatic Change in Continental Isotopic Records. AGU Geophysical Monograph #78: 179-190.Google Scholar
  51. Parry, L. G., 1965. Magnetic properties of dispersed magnetite powders. Phil. Mag. 11: 303-312.Google Scholar
  52. Peck, J. A., J. W. King, S. M. Colman & V. A. Kravchinsky, 1994. A rock-magnetic record from Lake Baikal, Siberia: Evidence for Late Quaternary climate change. Earth Planet. Sci. Lett. 122: 221-238.Google Scholar
  53. Rieck, H. J., A. M. Sarna-Wojcicki, C. E. Meyer & D. P. Adam, 1992. Magnetostratigraphy and tephrochronology of an upper Pliocene to Holocene record in lake sediments at Tulelake, northern California. Geol. Soc. Am. Bull. 104: 409-428.Google Scholar
  54. Roberts, A. P., K. L. Verosub & R. M. Negrini, 1994. Middle/ late Pleistocene relative palaeointensity of the geomagnetic field from lacustrine sediments, Lake Chewacuan, western United States. Geophys. J. Int. 23: 2859-2862.Google Scholar
  55. Roberts, A. P., B. Lehman, R. J. Weeks, K. L. Verosub & C. Laj, 1997. Relative paleointensity of the geomagnetic field over the last 200,000 years from ODP Sites 883 and 884, North Pacific Ocean. Earth Planet. Sci. Lett. 152: 11-23.Google Scholar
  56. Rosenbaum, J. G., R. L. Reynolds, D. P. Adam, J. Drexler, A. M. Sarna-Wojcicki & G. C. Whitney, 1996. Record of middle Pleistocene climate change from Buck Lake, Cascade Range, southern Oregon-Evidence from sediment magnetism, trace-element geochemistry, and pollen. Geol. Soc. Am. Bull. 108: 1328-1341.Google Scholar
  57. Ruddiman, W. F., 1987. Synthesis: The ocean/ice sheet record. In Ruddiman, W. F. & H. E. Wright Jr., (eds), North America and adjacent oceans during the last deglaciation. Geol. Soc. Am. DNAG Series K3: 463-478.Google Scholar
  58. Sarna-Wojcicki, A. M., C. E. Meyer, D. P. Adam & J. D. Sims, 1988. Correlations and age estimates of ash beds in late Quaternary sediments of Clear Lake, California. In Sims, J. D. (ed), Late Quaternary Climate, Tectonism, and Sedimentation in Clear Lake, Northern California Coast Ranges. Geol. Soc. Am. Spec. Pap. 214: 141-150.Google Scholar
  59. Sarna-Wojcicki, A. M. & J. O. Davis, 1991. Quaternary tephrochronology. In Morrison, R. (ed), Quaternary Nonglacial Geology: Conterminous U.S. Geol. Soc. Am. Decade of N. Am. Geol. K-2: 93-116.Google Scholar
  60. Shane, P., T. Black & J. Westgate, 1994. Isothermal plateau fission-track age for a paleomagnetic excursion in the Mamaku ignimbrite, New Zealand, and implications for late Quaternary stratigraphy. Geophys. Res. Lett. 21: 1695-1698.Google Scholar
  61. Snowball, I. F., 1993. Geochemical control of magnetite dissolution in subarctic lake sediments and the implications for environmental magnetism. J. Quat. Sci. 8: 339-346.Google Scholar
  62. Tanaka, H. G. M. Turner, B. F. Houghton, T. Tachibana, M. Kono & M. O. McWilliams, 1996. Paleomagnetism and chronology of the Central Taupo Volcanic Zone, New Zealand. Geophys. J. Int. 124: 919-934.Google Scholar
  63. Tauxe, L., 1993. Sedimentary records of relative paleointensity of the geomagnetic field: Theory and practice. Rev. Geophys. 31: 319-354.Google Scholar
  64. Thompson, R. & F. Oldfield, 1986. Environmental Magnetism, Allen and Unwin, Winchester, Mass.: 227 pp.Google Scholar
  65. Thompson, R. & D. J. Morton, 1979. Magnetic susceptibility and particle-size distribution in recent sediments of the Loch Lomond drainage basin, Scotland. J. Sed. Pet. 49: 801-812.Google Scholar
  66. Thouveny, N., J.-L. de Beaulieu, E. Bonifay, K. M. Creer, J. Guiot, M. Icole, S. Johnsen, J. Jouzel, M. Reille, T. Williams & D. Williamson, 1994. Climate variations in Europe over the past 140 kyr deduced from rock magnetism. Nature 371: 503-506.Google Scholar
  67. Tric, E., C. Laj, J.-P. Valet, P. Tucholka, M. Paterne & F. Guichard, 1991. The Blake geomagnetic event: Transition geometry, dynamical characteristics and geomagnetic significance. Earth Planet. Sci. Lett. 102: 1-13.Google Scholar
  68. Verosub, K. L., 1977. Depositional and post-depositional processes in the magnetization of sediments. Rev. Geophys. 15: 129-143.Google Scholar
  69. Verosub, K. L. & A. P. Roberts, 1995. Environmental magnetism: Past present and future. J. Geophys. Res. 100: 2175-2192.Google Scholar
  70. Walker, G. W., 1969. Geology of the High Lava Plains province. Oregon Dept. Geol. Min. Ind. Bull. 64: 77-79.Google Scholar
  71. Weeks, R. J., C. Laj, L. Endignous, A. Mazaud, L. Labeyrie, A. P. Roberts, C. Kissel & E. Blanchard, 1995. Normalized natural remanent magnetisation intensity during the last 240,000 years in piston cores from the central North Atlantic Ocean: Geomagnetic intensity or environmental signal? Phys. Earth Planet. Int. 87: 213-229.Google Scholar
  72. Wigand, P. E., M. L. Hemphill, S. Sharpe & S. Patra, 1995. Eagle Lake Basin, Northern California, paleoecological study: Semi-arid woodland and montañe forest dynamics during the late Quaternary in the Northern Great Basin and adjacent Sierra. Project report # CSA-5-93-63-024 to the Lassen National Forest. Quaternary Science Center of the Desert Research Institute, Reno, Nevada.Google Scholar
  73. Yamazaki, T. & N. Ioka, 1994. Long-term secular variation of the geomagnetic field during the last 200 kyr recorded in sediment cores from the western equatorial Pacific. Earth Planet. Sci. Lett. 128: 527-544.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Robert Negrini
    • 1
  • Daniel Erbes
    • 1
  • Karin Faber
    • 1
  • Adam Herrera
    • 1
  • Andrew Roberts
    • 2
  • Andrew Cohen
    • 3
  • Peter Wigand
    • 4
  • Franklin Foit
    • 5
  1. 1.Department of Physics & GeologyCalifornia State UniversityBakersfieldUSA
  2. 2.Department of OceanographyUniversity of Southampton, Southampton Oceanography Centre, European WaySouthamptonUK
  3. 3.Department of GeosciencesUniversity of ArizonaTusconUSA
  4. 4.Desert Research InstituteQuaternary Sciences CenterReno, NevadaUSA
  5. 5.Department of GeologyWashington State UniversityPullmanUSA

Personalised recommendations