Skip to main content
Log in

Abstract

While reconfigurable computing promises to deliver incomparable performance, it is still a marginal technology due to the high cost of developing and upgrading applications. Hardware virtualization can be used to significantly reduce both these costs. In this paper we describe the benefits of hardware virtualization, and show how it can be achieved using the technique of pipeline reconfiguration. The result is PipeRench, an architecture that supports robust compilation and provides forward compatibility. Our preliminary performance analysis on PipeRench predicts that it will outperform commercial FPGAs and DSPs in both overall performance and in performance normalized for silicon area over a broad range of problem sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.T. Kung, “Why Systolic Architectures?” IEEE Computer, Piscataway, NJ, 1982, pp. 37–45.

  2. R. Miller and Q.F. Stout, Parallel Algorithms for Regular Structures, MIT Press, 1996.

  3. D.I. Moldovan, “On the Analysis and Synthesis of VLSI Algorithms,” IEEE Transactions on Computers, vol. C-31, no.11, 1982, pp. 1121–1126.

    Article  Google Scholar 

  4. D.I. Moldovan, “On the Design of Algorithms for VLSI Systolics Arrays,” Proceedings of the IEEE, vol. 71, no.1, 1983, pp. 113–120.

    Article  Google Scholar 

  5. B. Von Herzen, “Signal Processing at 250 mhz Using High-Performance FPGAs,” ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, February 1997, pp. 62–68.

  6. Xilinx, XC4000 Series Field Programmable Gate Arrays, revision 1.04, Sept. 1996.

  7. Altera, Data book, 1998.

  8. Xilinx, XC6200 Field Programmable Gate Arrays, revision 1.7, Oct. 1996.

  9. A. DeHon, “DPGA-Coupled Microprocessors: Commodity ICs for the Early 21st Century,” Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, D.A. Buell and K.L. Pocek (Eds.), Napa, CA, April 1994, pp. 31–39.

  10. S. Scalera and J.R. Vazquez, “Design and Implementation of a Context Switching FPGA,” Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, J. Arnold and K.L. Pocek (Eds.), Napa, CA, April 1998, pp. 78–85.

  11. S. Trimberger, D. Carberry, A. Johnson, and J. Wong, “A Time-Multiplexed FPGA,” Proceedings of IEEEWorkshop on FPGAs for Custom Computing Machines, J. Arnold and K.L. Pocek (Eds.), Napa, CA, April 1997, pp. 22–28.

  12. M.J. Wirthlin and B.L. Hutchings, “Sequencing Run-Time Reconfigured Hardware with Software,” ACM/SIGDA International Symposium on Field Programmable Gate Arrays, Monterey, CA, February 1996, pp. 122–128.

  13. W. Luk, N. Shirazi, S.R. Guo, and P.Y.K. Cheung, “Pipeline Morphing and Virtual Pipelines,” Field-Programmable Logic and Applications, P.Y.K. Cheung, W. Luk, and M. Glesner (Eds.), London, England, Sept. 1997, pp. 111–120.

  14. S. Cadambi, J. Weener, S.C. Goldstein, H. Schmit, and D.E. Thomas, “Managing Pipeline-Reconfigurable FPGAs,” Proceedings ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays, February 1998, pp. 55–64.

  15. J. Rose, Private communications, 1997.

  16. S. Knapp, Using Programmable Logic to Accelerate DSP Functions, 1995. http://www.xilinx.com/appnotes/dspintro.pdf.

  17. Texas Instruments, TMS320C6201 digital signal processor, revision 2, 1997.

  18. J. Babb, R. Tessier, and A. Agarwal, “Virtual Wires: Overcoming Pin Limitations in FPGA-Based Logic Emulators,” Proceedings of IEEE Workshop on FPGAs for Custom Computing Machines, D.A. Buell and K.L. Pocek (Eds.), Napa, CA, April 1993, pp. 142–151.

  19. N. Bhat, K. Chaudhary, and E.S. Kuh, Performance-oriented fully routable dynamic architecture for a field programmable logic device. M93/42, U.C. Berkeley, 1993.

  20. J.R. Hauser and J. Wawrzynek, “Garp: A MIPS ProcessorWith a Reconfigurable Coprocessor,” IEEE Symposium on FPGAs for Custom Computing Machines, April 1997, pp. 24–33.

  21. C. Rupp, M. Landguth, T. Garverick, E. Gomersall, H. Holt, J. Arnold, and M. Gokhale, “The NAPA Adaptive Processing Architecture,” IEEE Symposium on FPGAs for Custom Computing Machines, April 1998, pp. 28–37.

  22. S. Hauck, T.W. Fry, M.M. Hosler, and J.P. Kao, “The Chimaera Reconfigurable Functional Unit,” IEEE Symposium on FPGAs for Custom Computing Machines, April 1997, pp. 87–96.

  23. R. Razdan and M.D. Smith, “A High-Performance Microarchitecture with Hardware-Programmable Functional Units,” MICRO-27, November 1994, pp. 172–180.

  24. R. Witting and P. Chow, “OneChip: An FPGA Processor with Reconfigurable Logic,” IEEE Symposium on FPGAs for Custom Computing Machines, 1996.

  25. A. Peleg, S.Wilkie, and U. Weiser, “Intel MMX for Multimedia PCs,” Communications of the ACM, vol. 40, no.1, 1997, pp. 24–38.

    Article  Google Scholar 

  26. R.P. Colwell, R.P. Nix, J.J. O'Donenell, D.B. Papworth, and P.K. Rodman, “A VLIW Architecture for a Trace Scheduling Compiler,” Proceedings of ASPLOS-II, March 1987, pp. 180–192.

  27. J. Wawrzynek, K. Asanovic, B. Kingsbury, J. Beck, D. Johnson, and N. Morgan, “Spert-II: A Vector Microprocessor System,” IEEE Computer, vol. 29, no.3, March 1996, pp. 79–86.

    Article  Google Scholar 

  28. C. Kozyrakis, S. Perissakis, D. Patterson, T. Anderson, K. Asanovic, N. Cardwell, R. Fromm, J. Golbus, B. Gribstad, K. Keeton, R. Thomas, N. Treuhaft, and K. Yelick, “Scalable Processors in the Billion-Transistor Era: IRAM,” IEEE Computer, 1997, pp. 75–78.

  29. R.M. Russell, “The CRAY-1 Processor System,” Communications of the ACM, vol. 21, no.1, 1978, pp. 63–72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmit, H.H., Cadambi, S., Moe, M. et al. Pipeline Reconfigurable FPGAs. The Journal of VLSI Signal Processing-Systems for Signal, Image, and Video Technology 24, 129–146 (2000). https://doi.org/10.1023/A:1008137204598

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008137204598

Keywords

Navigation