Skip to main content
Log in

Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Mixotrophic growth of the eicosapentaenoic acid (EPA)producing diatom Phaeodactylum tricornutum UTEX640 was carried out in 1-L batch cultures under anexternal irradiance of 165 μmol photons m-2s-1 by supplementing the inorganic culture mediumwith glycerol. The effect on the growth and the fattyacid profile was studied for different initialglycerol concentrations (0–0.1 M). The optimalglycerol concentration was 0.1 M.A lag phase was observed at high glycerolconcentrations. The present study also shows thatsuccessive additions of glycerol at 0.1M concentrationand using ammonium chloride as a nitrogen sourceremarkably increased the maximum biomass concentration(16.2 g L-1) and maximum biomass productivity(61.5 mg L-1 h-1). These values wererespectively 9 and 8-fold higher than in thephotoautotrophically grown control. The level ofsaponifiable lipids in mixotrophically cultured cellswas significantly higher than in photoautotrophicallycultured cells and increased with the glycerolconcentration in the medium. The concentration ofstorage lipids, saturated and monounsaturated fattyacids, were enhanced but the EPA content did notchange significantly. The EPA content was around 2.2%of biomass dry weight. The maximum EPA yield was33.5 mg L-1 d-1 and was obtained in aculture containing 0.1 M glycerol, supplementedperiodically by ammonium chloride. This productivitywas 10-fold higher than the EPA productivity obtainedunder mixotrophic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bajpai P, Bajpai PK (1993) Eicosapentaenoic acid (EPA) production from microorganisms: a review. J. Biotechnol. 30: 161-183.

    Google Scholar 

  • Becker EW (1994) Microalgae. In Becker EW (ed.), Biotechnology and Microbiology. Cambridge UP, Cambridge: pp. 9-41.

    Google Scholar 

  • Chen F (1996) High cell density culture of microalgae in heterotrophic growth. Trends Biotechnol. 14: 421-426.

    Google Scholar 

  • Chen F, Johns MR (1995) A strategy for high density culture of heterotrophic microalgae with inhibitory substrates. J. appl. Phycol. 7: 43-46.

    Google Scholar 

  • Chen F, Zhang Y (1997) High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enz. Microb. Technol. 20: 221-224.

    Google Scholar 

  • Chen F, Zhang Y, Guo S (1996) Growth and phycocyanin formation of Spirulina platensis in photoheterotrophic culture. Biotechnol. Lett. 18: 603-608.

    Google Scholar 

  • Chrismadha T, Borowitzka MA (1994) Effect of cell density and irradiance on growth, proximate composition and eicosapentaenoic acid production of Phaeodactylum tricornutum grown in a tubular photobioreactor. J. appl. Phycol. 6: 67-74.

    Google Scholar 

  • Cid A, Abalde J, Concepcion H (1992) High yield mixotrophic cultures of the marine microalga Tetraselmis suecica Butcher. J. appl. Phycol. 4: 31-37.

    Google Scholar 

  • Cohen Z, Vonshak A, Richmond A (1988) Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum: correlation to growth rate. J. Phycol. 24: 328-332.

    Google Scholar 

  • Contreras Gómez A, García Camacho F, Merchuk J, Molina Grima E (1998) Interaction between CO2-mass transfer, light availability, and hydrodynamic stress in the growth of Phaeodactylum tricornutum in a concentric tube airlift photobioreactor. Biotechnol. Bioengng 60: 318-325.

    Google Scholar 

  • Day JG, Tsalavos A (1996) An investigation of heterotrophic culture of the green alga Tetraselmis. J. appl. Phycol. 8: 73-77.

    Google Scholar 

  • Dustan GA, Volkman JK, Barret SM, Leroi J, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom. Phytochemistry 35: 155-161.

    Google Scholar 

  • Fábregas J, Morales ED, Lamela T, Cabezas B, Otero A (1996) Mixotrophic productivity of the marine diatom Phaeodactylum tricornutum cultured with soluble fractions of rye, wheat and potato. World J. Microbiol. Biotechnol. 13: 349-351.

    Google Scholar 

  • Flynn KJ, Syrett PJ (1986) Utilisation of L-lysine and L-arginine by the diatom Phaeodactylum tricornutum. Mar. Biol. 90: 159-163.

    Google Scholar 

  • García Sánchez JL, Molina Grima E, García Camacho F, Sánchez Pérez JA, López Alonso D (1994) Estudio de macronutrientes para la producción de PUFAs a partir de la microalga marina Isochrysis galbana. Grasas y aceites 45(5): 323-332.

    Google Scholar 

  • Hayward J (1968) Studies on the growth of Phaeodactylum tricornutum II. The effect of organic substances on growth. Physiol. Plantarum 21: 100-108.

    Google Scholar 

  • Hodgson PA, Henderson RJ, Sargent JR, Leftley JW (1991) Patterns of variation in the lipid class and fatty acid composition of Nannochloropsis oculata (Eustigmaphyceae) during batch culture. I. The growth cycle. J. appl. Phycol. 3: 169-181.

    Google Scholar 

  • Kaplan D, Richmond A, Dubinsky Z, Aaronson S (1986) Algal nutrition. In Richmond A (ed.), Handbook of Microalgal Mass Culture. CRC Press, Boca Raton, Florida: pp 147-198.

    Google Scholar 

  • Kitano M, Matsukawa R, Karube I (1997) Changes in eicosapentaenoic acid content of Navicula saprophila, Rhodomonas salina and Nitzschia sp. under mixotrophic conditions. J. appl. Phycol. 9: 559-563.

    Google Scholar 

  • Laliberte G, de la Noüe, J (1993) Auto-hetero-and mixotrophic growth of Chlamydomonas humícola (Chlorophyceae) on acetate. J. Phycol. 29: 612-620.

    Google Scholar 

  • Lee YK, Ding SY, Hoe CH, Low CS (1996) Mixotrophic growth of Chlorella sorokiniana in outdoor enclosed photobioreactor. J. appl. Phycol. 8: 163-169.

    Google Scholar 

  • Lee YK, Low CS (1992) Productivity of outdoor algal cultures in enclosed tubular photobioreactor. Biotechnol. Bioeng. 40: 1119-1122.

    Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, García Sánchez JL, López Alonso D (1993) n-3 PUFA productivity in chemostat cultures of microalgae. Appl. Microbiol. Biotechnol. 38: 599-605.

    Google Scholar 

  • Molina Grima E, García Camacho F, Sánchez Pérez JA, Urda Cardona J, Acién Fernández FG, Fernández Sevilla JM (1994a) Outdoor chemostat culture of Phaeodactylum tricornutum UTEX 640 in a tubular photobioreactor for the production of eicosapentaenoic acid. Biotechnol. appl. Biochem. 20: 279-290.

    Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, Fernández Sevilla JM, Acién Fernández FG (1994b) Effect of growth rate on EPA and DHA content of Isochrysis galbana in chemostat culture. Appl. Microbiol. Biotechnol. 41: 23-27.

    Google Scholar 

  • Molina Grima E, Sánchez Pérez JA, García Camacho F, Urda Cardona J, Fernández Sevilla JM, Acién Fernández FG (1995) Biomass and eicosapentaenoic acid productivities from an outdoor batch culture of Phaeodactylum tricornutum UTEX 640 in an airlift tubular photobioreactor. Appl. Microbiol. Biotechnol. 42: 658-663.

    Google Scholar 

  • Ogbonna JC, Masui H, Tanaka H (1997) Sequential heterotrophic/autotrophic cultivation-An efficient method of producing Chlorella biomass for health food and animal feed. J. appl. Phycol. 9: 359-366.

    Google Scholar 

  • Rodríguez Ruiz J, Belarbi EH, García Sánchez JL, López Alonso, D (1998) Rapid simultaneous lipid extraction and transesterification for fatty acid analyses. Biotechnol. Techniques 12: 689-691.

    Google Scholar 

  • Roessler PG (1990) Environmental control of glycerolipid metabolism in microalgae: commercial implications and future research directions. J. Phycol. 26: 393-399.

    Google Scholar 

  • Samejima H, Myers J (1958) On the heterotrophic growth of Chlorella pyrenoidosa. J. gen. Microbiol. 18: 107-117.

    Google Scholar 

  • Sánchez Pérez JA (1994) n-3 polyunsaturated fatty acid productivity of the marine microalga Isochrysis galbana. Growth conditions and phenotypic selection. J. appl. Phycol. 6: 475-478.

    Google Scholar 

  • Scheerer A, Parthier B (1982) Dark induced chloroplast differentiation in Euglena gracilis. Planta 156: 274-281.

    Google Scholar 

  • Seto A, Wang HL, Hesseltine CW (1984) Culture conditions affect eicosapentaenoic acid content of Chlorella minutissima. J. Am. Oil chem. Soc. 61: 892-894.

    Google Scholar 

  • Syrett PJ (1981) Nitrogen metabolism of microalgae. Can. Bull. Fish. aquat. Sci. 210: 182-210.

    Google Scholar 

  • Tan CK, Johns, MR (1996) Screening of diatoms for heterotrophic eicosapentaenoic production. J. appl. Phycol. 8: 59-64.

    Google Scholar 

  • Ukeles R, Rose, WE (1976) Observations on organic carbon utilisation by photosynthetic marine microalgae. Mar. Biol. 37: 11-28.

    Google Scholar 

  • Urda Cardona J (1997) Análisis del crecimiento y producción de ácido eicosapentaenoico en cultivos internos y externos de Phaeodactylum tricornutum UTEX 640. Doctoral Thesis. University of Almería, Spain.

    Google Scholar 

  • Yongmanitchai W, Ward OP (1989) ?3 fatty acids alternative sources of production. Process Biochem. 24: 117-125.

    Google Scholar 

  • Yongmanitchai W, Ward OP (1991) Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Appl. environ. Microbiol. 57: 419-425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerón Garcí, M., Fernández Sevilla, J., Acién Fernández, F. et al. Mixotrophic growth of Phaeodactylum tricornutum on glycerol: growth rate and fatty acid profile. Journal of Applied Phycology 12, 239–248 (2000). https://doi.org/10.1023/A:1008123000002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008123000002

Navigation