Skip to main content
Log in

A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

This article describes a molecular-field-based similarity method for aligning molecules by matching their steric and electrostatic fields and an application of the method to the alignment of three structurally diverse non-nucleoside HIV-1 reverse transcriptase inhibitors. A brief description of the method, as implemented in the program MIMIC, is presented, including a discussion of pairwise and multi-molecule similarity-based matching. The application provides an example that illustrates how relative binding orientations of molecules can be determined in the absence of detailed structural information on their target protein. In the particular system studied here, availability of the X-ray crystal structures of the respective ligand–protein complexes provides a means for constructing an 'experimental model' of the relative binding orientations of the three inhibitors. The experimental model is derived by using MIMIC to align the steric fields of the three protein P66 subunit main chains, producing an overlay with a 1.41 Å average rms distance between the corresponding Cα's in the three chains. The inter-chain residue similarities for the backbone structures show that the main-chain conformations are conserved in the region of the inhibitor-binding site, with the major deviations located primarily in the 'finger' and RNase H regions. The resulting inhibitor structure overlay provides an experimental-based model that can be used to evaluate the quality of the direct a priori inhibitor alignment obtained using MIMIC. It is found that the 'best' pairwise alignments do not always correspond to the experimental model alignments. Therefore, simply combining the best pairwise alignments will not necessarily produce the optimal multi-molecule alignment. However, the best simultaneous three-molecule alignment was found to reproduce the experimental inhibitor alignment model. A pairwise consistency index has been derived which gauges the quality of combining the pairwise alignments and aids in efficiently forming the optimal multi-molecule alignment analysis. Two post-alignment procedures are described that provide information on feature-based and field-based pharmacophoric patterns. The former corresponds to traditional pharmacophore models and is derived from the contribution of individual atoms to the total similarity. The latter is based on molecular regions rather than atoms and is constructed by computing the percent contribution to the similarity of individual points in a regular lattice surrounding the molecules, which when contoured and colored visually depict regions of highly conserved similarity. A discussion of how the information provided by each of the procedures is useful in drug design is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bugg, C.E., Carson, W.M. and Montgomery, J.A., Sci. Am., (1993) 92.

  2. Gund, P., Prog. Mol. Subcell Biol., 5 (1977) 117.

    Google Scholar 

  3. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., In Olson, E.C. and Christofferson, R.E. (Eds.) Computer-Assisted Drug Design, ACS Symposium Series, No. 112, American Chemical Society, Washington, DC, 1979, pp. 205–226.

    Google Scholar 

  4. Johnson, M.A. and Maggiora, G.M. (Eds.) Concepts and Applications of Molecular Similarity, Wiley, New York, NY, 1990.

    Google Scholar 

  5. Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Blackie Academic, London, 1995.

    Google Scholar 

  6. Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 615.

    Google Scholar 

  7. Good, A.C., So, S.-S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  8. Perkins, T.D.J., Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 479.

    Google Scholar 

  9. Grant, J.A., Gallardo, M.A. and Pickup, B.T., J. Comput. Chem., 17 (1996) 1653.

    Google Scholar 

  10. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.

    Google Scholar 

  11. McMartin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 9 (1995) 237.

    Google Scholar 

  12. Lemmen, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 357.

    Google Scholar 

  13. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Comput. Chem., 18 (1997) 934.

    Google Scholar 

  14. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Mol. Graph. Modelling, 15 (1997) 114.

    Google Scholar 

  15. Klebe, G., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  16. De Clercq, E., Biochem. Pharmacol., 47 (1994) 155.

    Google Scholar 

  17. Kohlstaedt, L.A., Wang, J., Friedman, J.M., Rice, P.A. and Steitz, T.A., Science, 256 (1992) 1783.

    Google Scholar 

  18. Ding, J., Kalysn, D., Moereels, H., Koymans, L., Andries, K., Janssen, P.A.J., Hughes, S.H. and Arnold, E., Nat. Struct. Biol., 2 (1995) 407.

    Google Scholar 

  19. Ding, J., Das, K., Tantillo, C., Zhang, W., Clark, Jr., A.D., Jessen, S., Lu, X., Hsiou, Y., Jacobo-Molina, A., Andries, K., Pauwels, R., Moereels, H., Koymans, L., Janssen, P.A.J., Smith, Jr., R.H., Koepke, M.K., Michejda, C.J., Hughes, S.H. and Arnold, E., Structure, 3 (1995) 365.

    Google Scholar 

  20. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer Jr., E.F., Brice, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  21. Merluzzi, V.J., Hargrave, K.D., Labadia, M., Grozinger, K., Skoog, M., Wu, J.C., Shih, C.-K., Eckner, K., Hattox, S., Adams, J., Rosenthal, A.S., Faanes, R., Eckner, R.J., Koup, R.A. and Sullivan, J.L., Science, 250 (1990) 1411.

    Google Scholar 

  22. Kukla, M.J., Breslin, H.J., Pauwels, R., Fedde, C.L., Miranda, M., Scott, M.K., Sherrill, R.G., Raeymaekers, A., Van Gelder, J., Andries, K., Janssen, M.A.C., De Clercq, E. and Janssen, P.A.J., J. Med. Chem., 34 (1991) 746.

    Google Scholar 

  23. Pauwels, R., Andries, K., Debyser, Z., Van Daele, P., Schols, D., Stoffels, P., De Vreese, K., Woestenborghs, R., Vandamme, A.-M., Janssen, C.G.M., Anne, J., Cauwenbergh, G., Desmyter, J., Heykants, J., Janssen, M.A.C., De Clercq, E. and Janssen, P.A.J., Proc. Natl. Acad. Sci. USA, 90 (1993) 1711.

    Google Scholar 

  24. Rohrer, D.C., In Carbó, R. (Ed.) Molecular Similarity and Reactivity: From Quantum Chemical to Phenomenological Approaches, Kluwer Academic Publishers, Dordrecht, 1995, pp. 141–161.

    Google Scholar 

  25. Audry, E., Dubost, J.P., Colleter, J.C. and Dallet, P., J. Med. Chem.-Chim. Ther., 21 (1986) 71.

    Google Scholar 

  26. Good, A.C., Hodgkin, E.E. and Richards, W.G., J. Chem. Inf. Comput. Sci., 32 (1992) 188.

    Google Scholar 

  27. Carbó, R., Leyda, L. and Arnau, M., Int. J. Quantum Chem., 17 (1980) 1185.

    Google Scholar 

  28. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  29. Rohrer, D.C. and Mestres, J., In Codding, P.W. (Ed.), Experimental and Conformational Approaches to Structure-Based Drug Design, Kluwer Academic Publishers, Dordrecht, 1998, pp. 211–222.

    Google Scholar 

  30. Cramer, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  31. Beck, B., Glen, R.C. and Clark, T., J. Mol. Graph., 14 (1996) 130.

    Google Scholar 

  32. Mui, P.W., Jacober, S.P., Hargrave, K.D. and Adams, J., J. Med. Chem., 35 (1992) 201.

    Google Scholar 

  33. Schäfer, W., Friebe, W.-G., Leinert, H., Mertens, A., Pool, T., von der Saal, W., Zilch, H., Nuber, B. and Ziegler, M.L., J. Med. Chem., 36 (1993) 726.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mestres, J., Rohrer, D.C. & Maggiora, G.M. A molecular-field-based similarity study of non-nucleoside HIV-1 reverse transcriptase inhibitors. J Comput Aided Mol Des 13, 79–93 (1999). https://doi.org/10.1023/A:1008098215954

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008098215954

Navigation