Advertisement

Journal of Applied Phycology

, Volume 10, Issue 3, pp 279–284 | Cite as

Genetic structure of natural populations of Gelidium species: A re-evaluation of results

  • P. A. Sosa
  • M. Valero
  • F. Batista
  • M. A. Gonzalez-Pérez
Article

Abstract

Twenty-two loci were re-evaluated to assess genetic variation and differentiation in three natural populations (two from Gran Canaria and one from Tenerife) of Gelidium (G. canariensis and G. arbuscula). The new data using exclusively the diploid subpopulation gene frequencies confirm that dispersal was restricted over short distances for the two species, but contrary to previous conclusions, the data reveal that these two closely related species differed markedly by their mating systems and patterns of genetic differentiation. Genetic differentiation among populations was twice as high in G. arbuscula as in G. canariensis. It was confirmed that the mean way of reproduction is asexual in G. arbuscula and a discussion included as to how clonal propagation may explain the difference in haploid and diploid allele frequencies in this species. There was no evidence for asexual reproduction in G. canariensis. Heterozygote deficiency could be explained simply by spatial sub-structuring within populations. The importance of the sampling design in determining the level and pattern of genetic differentiation within a species is discussed.

Canary Islands electrophoresis F-statistics Gelidium canariensis Gelidium arbuscula genetic distance genetic structure isozymes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benzie JAH, Price IR, Ballment E (1997) Population genetics and taxonomy of Caulerpa (Chlorophyta) from the great barrier reef, Australia. J. Phycol. 33: 491-504.CrossRefGoogle Scholar
  2. Cheney DP, Babbel GR (1978) Biosystematic studies of the red algal genus Eucheuma. 1. Electrophoretic variation among Florida populations. Mar. Biol. 47: 251-264.CrossRefGoogle Scholar
  3. Coyer JA, Robertson DL, Alberte RS (1994) Genetic variability within a population and between diploid/haploid tissue of Macrocystis pyrifera (Phaeophyta). J. Phycol. 30: 545-552.CrossRefGoogle Scholar
  4. Fujio Y, Kodaka PL, Hara M (1985) Genetic differentiation and amount of genetic variability in natural populations of the haploid laver Porphyra yezoensis. Jap. J. Genet. 60: 347-354.Google Scholar
  5. Goudet J (1995) Fstat Version 1.2. A computer program to calculate F-statistics. J. Hered. 86: 485-486.Google Scholar
  6. Goudet J, De Meeüs T, Day AJ, Gliddon C (1994) The different levels of population structuring of dogwhelks, Nucella lapillus, along the south Devon coast. In Beaumont A (ed.), Genetics and Evolution of Aquatic Organisms. Chapman & Hall, London, UK 81-95.Google Scholar
  7. Lewis PO, Zaykin D (1997) Genetic Data Analysis: Computer program for the analysis of allelic data. Version 1.0. Free program distributed by the authors over the internet from the GDA Home Page at http://chee.unm.edu/gda/software.Google Scholar
  8. Lindstrom SC (1993) Inter-and intrapopulation genetic variation in species of Porphyra(Rhodophyta: Bangiales) from British Columbia and adjacent waters. J. appl. Phycol. 5: 53-62.CrossRefGoogle Scholar
  9. Lu TT, Williams SL (1994) Genetic diversity and genetic structure in the brown alga Halidrys dioica(Fucales: Cystoseiraceae) in southern california. Mar. Biol. 121: 363-371.CrossRefGoogle Scholar
  10. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89: 583-590.Google Scholar
  11. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and eucumenism. J. Hered. 86: 248-249.Google Scholar
  12. Rousset F, Raymond M (1997) Statistical analyses of population genetic data: new tools, old concepts. Trends Ecol. Evol. 12: 313-317.CrossRefGoogle Scholar
  13. Sosa PA, Garcia-Reina G (1992) Genetic variability and differentiation of sporophytes and gametophytes in populations of Gelidiutn arbuscula (Gelidiaceae: Rhodophyta) determined by isozyme electrophoresis. Mar. Biol. 113: 679-688.CrossRefGoogle Scholar
  14. Sosa PA, Garcia-Reina G (1993) Genetic variability of Gelidium canariensis(Rhodophyta) determined by isozyme electrophoresis. J. Phycol. 29: 118-124.Google Scholar
  15. Wattier R, Dallas JF, Destombe C, Saumitou Laprade P, Valero M (1997) Single locus microsatellites in Gracilariales (Rhodophyta): high level of genetic variability within Gracilaria gracilisand conservation in related species. J. Phycol. 33: 868-880.CrossRefGoogle Scholar
  16. Weir BS, Cockerham CC (1984) Estimating the F-statistics for the analysis of population structure. Evolution 38: 1358-1370.CrossRefGoogle Scholar
  17. Williams SL, Di Fiori RE (1996) Genetic diversity and structure in Pelvetia fastigiata(Phaeophyta: Fucales): does a small effective neighborhood size explain fine-scale genetic structure. Mar. Biol. 126: 371-382.CrossRefGoogle Scholar
  18. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19: 395-420.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • P. A. Sosa
    • 1
  • M. Valero
    • 2
  • F. Batista
    • 1
  • M. A. Gonzalez-Pérez
    • 1
  1. 1.Departamento de BiologiaUniversidad de Las Palmas de Gran Canaria, Campus Universitario de TafiraLas Palmas, Canary IslandsSpain
  2. 2.Laboratoire de Génétique et Evolution des Populations VégétalesUniversité de Lille-1Villeneuve d'Ascq cedexFrance

Personalised recommendations