Skip to main content
Log in

MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The recently proposed WHIM (Weighted Holistic Invariant Molecular) approach [Todeschini,R., Lasagni, M. and Marengo, E., J. Chemometrics, 8 (1994) 263] has been applied tomolecular surfaces to derive new 3D theoretical descriptors, called MS-WHIM. To test theirreliability, a 3D QSAR study has been performed on a series of steroids, comparing the MS-WHIM description to both the original WHIM indices and CoMFA fields. The analysis of thestatistical models obtained shows that MS-WHIM descriptors provide meaningful quantitativestructure–activity correlations. Thus, the results obtained agree well with thoseachieved using CoMFA fields. The concise number of indices, the ease of their calculationand their invariance to the coordinate system make MS-WHIM an attractive tool for 3DQSAR studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cramer III, R.D., DePriest, S.A., Patterson, D.E. and Hecht, P., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 443–485.

    Google Scholar 

  2. Bradshaw, J., Wynn, E.W., Salt, D.W. and Ford, M.G., In Wermuth, C.G. (Ed.) Trends in QSAR and Molecular Modelling 92 (Proceedings of the 9th European Symposium on Structure–Activity Relationships: QSAR and Molecular Modelling), ESCOM, Leiden, The Netherlands, 1993, pp. 220–224.

    Google Scholar 

  3. Broto, P., Moreau, G. and Vandycke, C., Eur. J. Med. Chem.–Chim. Ther., 19 (1984) 66.

    Google Scholar 

  4. Clementi, S., Cruciani, G., Riganelli, D., Valigi, R., Costantino, G., Baroni, M. and Wold, S., Pharm. Pharmacol. Lett., 3 (1993) 5.

    Google Scholar 

  5. Todeschini, R., Lasagni, M. and Marengo, E., J. Chemometr., 8 (1994) 263.

    Google Scholar 

  6. Todeschini, R., Gramatica, P., Provenzani, R. and Marengo, E., Chemometr. Intell. Lab. Syst., 27 (1995) 221.

    Google Scholar 

  7. Todeschini, R., Vighi, M., Provenzani, R., Finizio, A. and Gramatica, P., Chemosphere, 8 (1996) 1527.

    Google Scholar 

  8. Todeschini, R., Moro, G., Boggia, R., Bonati, L., Cosentino, U., Lasagni, M. and Pitea, D., Chemometr. Intell. Lab. Syst., in press.

  9. Cramer III, R.D., Patterson, D.E. and Bunce, J.D., J. Am. Chem. Soc., 110 (1988) 5959.

    Google Scholar 

  10. Oprea, T.I., Ciubotariu, D., Sulea, T.I. and Simon, Z., Quant. Struct.–Act. Relatsh., 12 (1993) 21.

    Google Scholar 

  11. Good, A.C., So, S. and Richards, W.G., J. Med. Chem., 36 (1993) 433.

    Google Scholar 

  12. Good, A.C., Peterson, S.J. and Richards, W.G., J. Med. Chem., 36 (1993) 2929.

    Google Scholar 

  13. Jain, N.A., Koile, K. and Chapman, D., J. Med. Chem., 37 (1994) 2315.

    Google Scholar 

  14. Dunn, J.F., Nisula, B.C. and Rodbard, D., J. Clin. Endocrin. Metab., 53 (1981) 58.

    Google Scholar 

  15. Joliffe, I.T., Principal Components Analysis, Springer, New York, NY, U.S.A., 1986.

    Google Scholar 

  16. Box, G.E.P., Hunter, W.G. and Hunter, J.S., Statistics for Experimenters, Wiley, New York, NY, U.S.A., 1978.

    Google Scholar 

  17. Clementi, S., Cruciani, G., Baroni, M. and Costantino, G., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 570–572.

    Google Scholar 

  18. Wold, S., Albano, C., Dunn III, W.J., Edlund, U., Ebsen, K., Geladi, P., Hellberg, S., Johansson, E., Lindberg, W. and Sjostrom, M., In Kowalsky, B.R. (Ed.) Chemometrics, Reidel, Dordrecht, The Netherlands, 1984, p. 17.

    Google Scholar 

  19. Westphal, U., Steroid–Protein Interactions II, Springer, Berlin, Germany, 1986.

    Google Scholar 

  20. Roberts, S.M., Symposia in Print: Molecular Recognition in Chemistry and Biochemistry Problems, Royal Society, London, U.K., 1989.

    Google Scholar 

  21. Connolly, M., QCPE Bull., 1 (1981) 75.

    Google Scholar 

  22. Weiner, P., Langridge, R., Blaney, J.M., Schefer, R. and Kollman, P.A., Proc. Natl. Acad. Sci. USA, 79 (1982) 3754.

    Google Scholar 

  23. SYBYL molecular modeling system, available from Tripos Associates, Inc., St. Louis, MO, U.S.A.

  24. Baroni, M., Costantino, G., Cruciani, G., Riganelli, D., Valigi, R. and Clementi, S., Quant. Struct.–Act. Relatsh., 12 (1993) 9.

    Google Scholar 

  25. Kearsley, S.K. and Smith, G.M., Tetrahedron Comput. Methodol., 3 (1990) 616.

    Google Scholar 

  26. Clark, M., Cramer III, R.D. and Van Opdenbosch, N., J. Comput. Chem., 7 (1986) 230.

    Google Scholar 

  27. Gasteiger, J. and Marsili, M., Tetrahedron, 36 (1980) 3219.

    Google Scholar 

  28. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.

    Google Scholar 

  29. Wold, S., Technometrics, 20 (1978) 397.

    Google Scholar 

  30. Kubinyi, H. and Abraham, U., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 717–728.

    Google Scholar 

  31. Manallack, D.T., Ellis, D.D. and Livingstone, D.J., J. Med. Chem., 37 (1994) 3758.

    Google Scholar 

  32. Manallack, D.T. and Livingstone, D.J., Med. Chem. Res., 2 (1992) 181.

    Google Scholar 

  33. Folkers, G., Merz, A. and Rognan, D., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, The Netherlands, 1993, pp. 583–618.

    Google Scholar 

  34. Audry, E., Dubost, J.P., Colleter, J.C. and Dallet, P., Eur. J. Med. Chem.–Chim. Ther., 21 (1986) 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bravi, G., Gancia, E., Mascagni, P. et al. MS-WHIM, new 3D theoretical descriptors derived from molecular surface properties: A comparative 3D QSAR study in a series of steroids. J Comput Aided Mol Des 11, 79–92 (1997). https://doi.org/10.1023/A:1008079512289

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008079512289

Navigation