Skip to main content
Log in

Robust Shape Recovery from Occluding Contours Using a Linear Smoother

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Recovering the shape of an object from two views fails at occluding contours of smooth objects because the extremal contours are view dependent. For three or more views, shape recovery is possible, and several algorithms have recently been developed for this purpose. We present a new approach to the multiframe stereo problem that does not depend on differential measurements in the image, which may be noise sensitive. Instead, we use a linear smoother to optimally combine all of the measurements available at the contours (and other edges) in all of the images. This allows us to extract a robust and reasonably dense estimate of surface shape, and to integrate shape information from both surface markings and occluding contours. Results are presented, which empirically show that in the presence of noise, smoothing over more than three views reduces the error even when the epipolar curve is nonplanar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert, A. 1972. Regression and the Moore-Penrose Pseudoinverse. Academic Press: New York.

    Google Scholar 

  • Arborgast, E. and Mohr, R. 1992. An egomotion algorithm based on the tracking of arbitrary curves. In Second European Conference on Computer Vision (ECCV’92), Springer-Verlag: Santa Margherita Liguere, Italy. pp. 467-475.

    Google Scholar 

  • Arnold, R.D. 1983. Automated stereo perception. Technical Report AIM-351, Artificial Intelligence Laboratory, Stanford University.

  • Baker, H.H. 1989. Building surfaces of evolution: The weavingwall. International Journal of Computer Vision, 3(1):50-71.

    Google Scholar 

  • Baker, H.H. and Bolles, R.C. 1989. Generalizing epipolar-plane image analysis on the spatiotemporal surface. International Journal of Computer Vision, 3(1):33-49.

    Google Scholar 

  • Bar-Shalom, Y. and Fortmann, T.E. 1988. Tracking and Data Association. Academic Press: Boston, MA.

    Google Scholar 

  • Bierman, G.J. 1977. Factorization Methods for Discrete Sequential Estimation. Academic Press: New York.

    Google Scholar 

  • Blake, A. and Cipolla, R. 1990. Robust estimation of surface curvature from deformation of apparent contours. In First European Conference on Computer Vision (ECCV’90), Springer-Verlag: Antibes, France, pp. 465-474.

    Google Scholar 

  • Blake, A., Zisserman, A., and Cipolla, R. 1992. Visual exploration of free-space. In Active Vision, A. Blake and A.L. Yuille (Eds.), MIT Press: Cambridge, MA, pp. 175-188.

    Google Scholar 

  • Blake, A., Curwen, R., and Zisserman, A. 1993. A framework for spatio-temporal control in the tracking of visual contour. International Journal of Computer Vision, 11(2):127-145.

    Google Scholar 

  • Bolles, R.C., Baker, H.H., and Marimont, D.H. 1987. Epipolar-plane image analysis: An approach to determining structure from motion. International Journal of Computer Vision, 1:7-55.

    Google Scholar 

  • Boyer, E. and Berger, M.O. 1997. 3D surface reconstruction using occluding countours. International Journal of Computer Vision, 22(3):219-233.

    Article  Google Scholar 

  • Canny, J. 1986. A computational approach to edge detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8(6):679-698.

    Google Scholar 

  • Cipolla, R. and Blake, A. 1990. The dynamic analysis of apparent contours. In Third International Conference on Computer Vision (ICCV’90), IEEE Computer Society Press: Osaka, Japan, pp. 616-623.

    Google Scholar 

  • Cipolla, R. and Blake, A. 1992. Surface shape from the deformation of apparent contours. International Journal of Computer Vision, 9(2):83-112.

    Google Scholar 

  • Clark, J.J. and Yuille, A.L. 1990. Data Fusion for Sensory Information Processing Systems. Kluwer Academic Publishers: Boston, MA.

    Google Scholar 

  • Curwen, R., Blake, A., and Zisserman, A. 1992. Real-time visual tracking for surveillance and path planning. In Second European Conference on Computer Vision (ECCV’92), Springer-Verlag: Santa Margherita Liguere, Italy, pp. 879-883.

    Google Scholar 

  • Faugeras, O.D., Lustman, F., and Toscani, G. 1987. Motion and structure from motion from point and line matches. In First International Conference on Computer Vision (ICCV’87), IEEE Computer Society Press: London, England, pp. 25-34.

    Google Scholar 

  • Freeman, W.T. and Adelson, E.H. 1991. The design and use of steerable filters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891-906.

    Article  Google Scholar 

  • Gelb, A., (Ed.), 1974. Applied Optimal Estimation. MIT Press: Cambridge, MA.

    Google Scholar 

  • Giblin, P. and Weiss, R. 1987. Reconstruction of surfaces from profiles. In First International Conference on Computer Vision (ICCV’87), IEEE Computer Society Press: London, England, pp. 136-144.

    Google Scholar 

  • Giblin, P.J., Rycroft, J.E., and Pollick, F.E. 1992. Moving surfaces. In Mathematics of Surfaces V, Inst. of Math and its Applications Conference. Cambridge University Press.

  • Giblin, P.J. and Weiss, R.S. 1994. Epipolar fields on surfaces. In Third European Conference on Computer Vision (ECCV’94), Springer-Verlag: Stockholm, Sweden, vol. 1, pp. 14-23.

    Google Scholar 

  • Horn, B.K.P. 1990. Relative orientation. International Journal of Computer Vision, 4(1):59-78.

    Google Scholar 

  • Huber, P.J. 1981. Robust Statistics. John Wiley & Sons: New York.

    Google Scholar 

  • Lowe, D.G. 1991. Fitting parameterized three-dimensional models to images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(5):441-450.

    Article  Google Scholar 

  • Marr, D.C. and Poggio, T. 1979. A computational theory of human stereo vision. In Proceedings of the Royal Society of London, vol. B204, pp. 301-328.

    Google Scholar 

  • Marr, D. and Hildreth, E. 1980. Theory of edge detection. In Proceedings of the Royal Society of London, vol. B207, pp. 187-217.

    Google Scholar 

  • Matthies, L.H., Szeliski, R., and Kanade, T. 1989. Kalman filterbased algorithms for estimating depth from image sequences. International Journal of Computer Vision, 3:209-236.

    Google Scholar 

  • Maybeck, P.S. 1979. Stochastic Models, Estimation, and Control, Academic Press: New York, vol. 1.

    Google Scholar 

  • Mayhew, J.E.W. and Frisby, J.P. 1980. The computation of binocular edges. Perception, 9:69-87.

    Google Scholar 

  • Pentland, A. and Sclaroff, S. 1991. Closed-form solutions for physically based shape modeling and recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):715-729.

    Article  Google Scholar 

  • Press, W.H., Flannery, B.P., Teukolsky, S.A., and Vetterling, W.T. 1986. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press: Cambridge, England.

    Google Scholar 

  • Rives, P., Breuil, E., and Espiau, B. 1986. Recursive estimation of 3D features using optical flow and camera motion. In Conference on Intelligent Autonomous Systems, Elsevier Science Publishers, pp. 522-532. Also appeared in 1987 IEEE International Conference on Robotics and Automation.

  • Szeliski, R. 1989. Bayesian Modeling of Uncertainty in Low-Level Vision. Kluwer Academic Publishers: Boston, MA.

    Google Scholar 

  • Szeliski, R. 1991. Shape from rotation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’91), IEEE Computer Society Press: Maui, Hawaii, pp. 625-630.

    Google Scholar 

  • Szeliski, R. 1993. Rapid octree construction from image sequences. CVGIP: Image Understanding, 58(1):23-32.

    Article  Google Scholar 

  • Szeliski, R., Tonnesen, D., and Terzopoulos, D. 1993. Modeling surfaces of arbitrary topology with dynamic particles. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’93), New York, pp. 82-87.

  • Terzopoulos, D. and Metaxas, D. 1991. Dynamic 3D models with local and global deformations: Deformable superquadrics. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(7):703-714.

    Article  Google Scholar 

  • Tsai, R.Y. and Huang, T.S. 1984. Uniqueness and estimation of threedimensional motion parameters of rigid objects with curved surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(1):13-27.

    Google Scholar 

  • Vaillant, R. 1990. Using occluding contours for 3D object modeling. In First European Conference on Computer Vision (ECCV’90), Springer-Verlag: Antibes, France, pp. 454-464.

    Google Scholar 

  • Vaillant, R. and Faugeras, O.D. 1992. Using extremal boundaries for 3D object modeling. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2):157-173.

    Article  Google Scholar 

  • Zheng, J.Y. 1994. Acquiring 3D models from sequences of contours. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(2):163-178.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szeliski, R., Weiss, R. Robust Shape Recovery from Occluding Contours Using a Linear Smoother. International Journal of Computer Vision 28, 27–44 (1998). https://doi.org/10.1023/A:1008050630628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008050630628

Navigation