, Volume 28, Issue 1–3, pp 163–175 | Cite as

Mammalian cell retention devices for stirred perfusion bioreactors

  • Steven M. Woodside
  • Bruce D. Bowen
  • James M. Piret


Within the spectrum of current applications for cell culture technologies, efficient large-scale mammalian cell production processes are typically carried out in stirred fed-batch or perfusion bioreactors. The specific aspects of each individual process that can be considered when determining the method of choice are presented. A major challenge for perfusion reactor design and operation is the reliability of the cell retention device. Current retention systems include cross-flow membrane filters, spin-filters, inclined settlers, continuous centrifuges and ultrasonic separators. The relative merits and limitations of these technologies for cell retention and their suitability for large-scale perfusion are discussed.

centrifuge cross-flow filter review sedimentation spin-filter ultrasonic cell retention 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arathoon WR and Birch JR (1986) Large-scale cell culture in biotechnology. Science 232: 1390-1395.Google Scholar
  2. Avgerinos GC, Drapeau D, Socolow JS, Mao J, Hsiao K and Broeze RJ (1990) Spin filter perfusion system for high density cell culture: production of recombinant urinary type plasminogen activator in CHO cells. Bio/technol 8: 54-58.CrossRefGoogle Scholar
  3. Batt BC, Davis RH and Kompala DS (1990) Inclined sedimentation for selective retention of viable hybridomas in a continuous suspension bioreactor. Biotechnol Prog 6: 458-464.CrossRefGoogle Scholar
  4. Belfort G (1988) Membrane modules: Comparisons of different configurations using fluid mechanics. J Membr Sci 35: 245-270.CrossRefGoogle Scholar
  5. Benes E, Hager F, Bolek W and Gröschl M (1991) Separation of dispersed particles by drifting ultrasonic resonance fields. Ultrason. Int. Conf., Le Touquet, France, Butterworth-Heinemann, 167-170.Google Scholar
  6. Bibila TA and Robinson DK (1995) In pursuit of the optimal fed-batch process for monoclonal antibody production. Biotechnol Prog 11: 1-13.CrossRefGoogle Scholar
  7. Bodeker BGD, Newcomb R, Yuan P, Braufman A and Kelsey W (1994) Production of recombinant factor VIII from perfusion cultures: I. Large-scale fermentation. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: Products of today, prospects for tomorrow, Butterworth-Heinemann, Oxford, pp. 580-583.Google Scholar
  8. Bowen WR and Gan Q (1992) Properties of microfiltration membrane: the effects of adsorption and shear on the recovery of an enzyme. Biotechnol Bioeng 40: 491-497.CrossRefGoogle Scholar
  9. Davis RH and Acrivos A (1985) Sedimentation of noncolloidal particles at low Reynolds numbers. Ann Rev Fluid Mech 17: 91-118.CrossRefGoogle Scholar
  10. Davison BH, San K-Y and Stephanopoulos G (1985) Stable competitive coexistence in a continuous fermenter with size selective properties. Biotechnol Prog 1: 260-268.CrossRefGoogle Scholar
  11. Dela Brois e D, Noiseux M, Massie B and Lemieux R (1992) Hybridoma perfusion systems: A comparison study. Biotechnol Bioeng 40: 25-32.CrossRefGoogle Scholar
  12. Deo YM, Mahadevan MD and Fuchs R (1996) Practical considerations in operation and scale up of spin filter based bioreactors for monoclonal antibody production. Biotechnol Prog 12: 57-64.CrossRefGoogle Scholar
  13. Doblhoff-Dier O, Gaida T, Katinger H, Burger W, Gröschl M and Benes E (1994) A novel ultrasonic resonance field device for the retention of animal cells. Biotechnol Prog 10: 428-32.CrossRefGoogle Scholar
  14. Drew DA, Schonberg JA and Belfort G (1991) Lateral inertial migration of a small sphere in fast laminar flow through a small membrane duct. Chem Eng Sci 46: 3219-3224.CrossRefGoogle Scholar
  15. Esclade LRJ, Carrel S and Peringer P (1991) Influence of the screen material on the fouling of spin filters. Biotechnol Bioeng 38: 159-168.CrossRefGoogle Scholar
  16. Favre E and Thaler T (1992) An engineering analysis of rotating sieves for hybridoma cell retention in stirred tank bioreactors. Cytotechnol 9: 11-19.Google Scholar
  17. Forstrom RJ, Bartlet K, BlackshearJr, PL and Wood T (1975) Formed elements deposition onto filtering walls. Trans Am Soc Artif Intern Org 21: 602.Google Scholar
  18. Frank A, Bolek W, Groeschl M, Burger W and Benes E (1993) Separation of suspended particles by use of the inclined resonator concept. Proc. Ultrason. Int. Conf., Vienna, Austria, Butterworth-Heinemann, Oxford, 519-522.Google Scholar
  19. Frenander U and Jonsson AS (1996) Cell harvesting by cross-flow microfiltration using a shear enhanced module. Biotechnol Bioeng 52: 397-403.CrossRefGoogle Scholar
  20. Gaida T, Doblhoff-Dier O, Strutzenberger K, Katinger H, Burger W, Gröschl M, Handl B and Benes E (1996) Selective retention of viable cells in ultrasonic resonance field devices. Biotechnol Prog 12: 73-76.CrossRefGoogle Scholar
  21. Glacken MW, Fleischaker RJ and Sinskey AJ (1986) Reduction of waste product excretion via nutrient control: Possible strategies for maximizing product and cell yields on serum in cultures of mammalian cells. Biotechnol Bioeng 28: 1376-1389.CrossRefGoogle Scholar
  22. Gor'kov LP (1962) On the forces acting on a small particle in an acoustical field in an ideal fluid. Sov Phys Dokl 6: 773-775.Google Scholar
  23. Henry KL, Davis RH and Taylor AL (1990) Continuous recombinant bacterial fermentations utilizing selective flocculation and recycle. Biotechnol Prog 6: 7-12.CrossRefGoogle Scholar
  24. Hiller G, Clark D and Blanch H (1993) Cell retention chemostat studies of hybridoma cells. Analysis of hybridoma growth and metabolism in continuous suspension culture on serum free medium. Biotechnol Bioeng 42: 185-195.CrossRefGoogle Scholar
  25. Himmelfarb P, Thayer PS and Martin HE (1969) Spin-filter culture: the propagation of mammalian cells in suspension. Science 164: 555-557.Google Scholar
  26. Hodgson (1991) Centrifugation takes a new turn. Bio/technol 9: 628-629.CrossRefGoogle Scholar
  27. Hülscher M, Scheibler U and Onken U (1992) Selective recycle of viable animal cells by coupling of airlift reactor and cell settler. Biotechnol Bioeng 39: 442-446.CrossRefGoogle Scholar
  28. Ito Y, Suaudeau J and Bowman RL (1975) New flow-through centrifuge without rotating seals applied to plasmapheresis. Science 189: 999-1000.Google Scholar
  29. Jackson LR, Trudel LJ, Fox JG and Lipman NS (1996) Evaluation of hollow-fiber bioreactors as an alternative to murine ascites production for small scale monoclonal antibody production. J Immunol Methods 189: 217-231.CrossRefGoogle Scholar
  30. Jäger V (1992) A novel perfusion system for the large-scale cultivation of animal cells based on a continuous flow centrifuge. In: Spier RE, Griffiths JB and MacDonald C (eds.) Animal cell technology: Developments, processes, products, Butterworth-Hienemann, Oxford, pp. 397-402.Google Scholar
  31. Johnson M, Lanthier S, Massie B, Lefebvre G and Kamen AA (1996) Use of the Centritech Lab centrifuge for perfusion culture of hybridoma cells in protein free medium. Biotechnol Prog 12: 855-864.CrossRefGoogle Scholar
  32. Kadouri A and Spier RE (1997) Some myths and messages concerning the batch and continuous culture of animal cells. Cytotechnol 24: 89-98.CrossRefGoogle Scholar
  33. Kawahara H, Mitsuda S, Kumazawa E and Takeshita Y (1994) High-density culture of FM-3A cells using a bioreactor with an external tangential filtration device. Cytotechnol 14: 61-66.CrossRefGoogle Scholar
  34. Kelly ST and Zydney AL (1997) Protein fouling during micro-filtration: comparative behavior of different model proteins. Biotechnol Bioeng 55: 91-100.CrossRefGoogle Scholar
  35. Kilburn DG, Clarke DJ, Coakley WT and Bardsley DW (1989) Enhanced sedimentation of mammalian cells following acoustic aggregation. Biotechnol Bioeng 34: 559-562.CrossRefGoogle Scholar
  36. Maiorella B, Dorin G, Carion A and Harano D (1991) Crossflow microfiltration of animal cells. Biotechnol Bioeng 37: 121-126.CrossRefGoogle Scholar
  37. Maiorella BL, Winkelhake J, Young J, Moyer B, Bauer R, Hora M, Andya J, Thomson J, Patel T and Parekh R (1993) Effect of culture conditions on IMantibody eistructure,pharmacokinetics and activity. BioTechnol 11: 387-392.CrossRefGoogle Scholar
  38. Marino M, Corti A, Ippolito A, Cassani G and Fassina G (1997) Effect of bench-scale culture conditions on murine IgG heterogeneity. Biotechnol Bioeng 54: 17-25.CrossRefGoogle Scholar
  39. Martin N, Brennan A, Denome L and Shaevitz J (1989) High productivity in mammalian cell culture. Bio/technol 5: 838-840.CrossRefGoogle Scholar
  40. Mercille S, Johnson M, Lemieux R and Massie B (1994) Filtration-based perfusion of hybridoma cultures in protein free medium: reduction of membrane fouling by medium supplementation with DNase I. Biotechnology and Bioengineering 43: 833-846.CrossRefGoogle Scholar
  41. Mercille S and Massie B (1994) Induction of apoptosis in nutrient-deprived cultures of hybridoma and myeloma cells. Biotechnol Bioeng 44: 1140-1154.CrossRefGoogle Scholar
  42. Piret JM, Devens DA and Cooney CL (1991) Nutrient and metabolite gradients in mammalian hollow-fiber bioreactors. Can J Chem Eng 69: 421-428.CrossRefGoogle Scholar
  43. Pui PWS, Trampler F, Sonderhoff SA, Groeschl M, Kilburn DG and Piret JM (1995) Batch and semicontinuous aggregation and sedimentation of hybridoma cells by acoustic resonance fields. Biotechnol Prog 11: 146-52.CrossRefGoogle Scholar
  44. Rebsamen E, Goldinger W, Scheirer W, Merten O-W and Pálfi GE (1987) Use of a dynamic filtration method for separation of animal cells. Develop Biol Standard 66: 273-277.Google Scholar
  45. Reuveny S, Velez D, Miller L and Macmillan JD (1986) Comparison of cell propagation methods for their effect on monoclonal antibody yield in fermenters. J Immunol Meth 86: 61-69.CrossRefGoogle Scholar
  46. Roth G, Smith CE, Schoofs GM, Montgomery JLA and Horwitz JI (1997) Using an external vortex flow filtration device for perfusion cell culture. BioPharm October: 30-35.Google Scholar
  47. Searles JA, Todd P and Kompala DS (1994) Viable cell recycle with an inclined settler in the perfusion culture of suspended recombinant Chinese hamster ovary cells. Biotechnol Prog 10: 198-206.CrossRefGoogle Scholar
  48. Shi Y, Ryu DDY and Park SH (1992) Performance of mammalian cell culture bioreactor with a new impeller design. Biotechnol Bioeng 40: 260-270.CrossRefGoogle Scholar
  49. Shitani Y, Kohno Y-I, Sawada H and Kitano K (1991) Comparison of culture methods for human-human hybridomas secreting anti-HBsAg human monoclonal antibodies. Cytotechnol 6: 197-208.CrossRefGoogle Scholar
  50. Stevens J, Eickel S and Onken U (1994) Lamellar clarifier-a device for animal cell retention in perfusion culture systems. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: Products of today, prospects for tomorrow, Butterworth-Heinemann, Oxford, pp. 234-239.Google Scholar
  51. Takazawa Y and Tokashiki M (1989) High cell density perfusion culture of mouse-human hybridoma. Appl Microbiol Biotechnol 32: 280-284.CrossRefGoogle Scholar
  52. Thompson, KJ and Wilson JS (1994) A compact gravitational settling device for cell retention. In: Spier RE, Griffiths JB and Berthold W (eds.) Animal cell technology: Products of today, prospects for tomorrow, Butterworth-Heinemann, Oxford, pp. 227-229.Google Scholar
  53. Tokashiki M, Arai T, Hamamoto K and Ishimaru K (1990) High density culture of hybridoma cells using a perfusion culture vessel with an external centrifuge. Cytotechnol 3: 239-244.CrossRefGoogle Scholar
  54. Tolbert WR, Feder J and Kimes RC (1981) Large-scale rotating filter perfusion system for high-density growth of mammalian suspension cultures. In Vitro 17: 885-890.Google Scholar
  55. Trampler F, Sonderhoff SA, Pui PW, Kilburn DG and Piret JM (1994) Acoustic cell filter for high density perfusion culture of hybridoma cells. Bio/technol 12: 281-284.CrossRefGoogle Scholar
  56. Van Reis R, Leonard LC, Hsu CC and Builder SE (1991) Industrial scale harvest of proteins from mammalian cell culture by tangential flow filtration. Biotechnol Bioeng 38: 413-422.CrossRefGoogle Scholar
  57. Varecka R and Scheirer W (1987) Use of a rotating wire cage for retention of animal cells in a perfusion fermenter. Dev Biol Stand 66: 269-272.Google Scholar
  58. Velez D, Miller L and Macmillan JD (1989) Use of tangential flow filtration in perfusion propagation of hybridoma cells for production of monoclonal antibodies. Biotechnol Bioeng 33: 938-940.CrossRefGoogle Scholar
  59. Whitworth G, Grundy MA and Coakley WT (1991) Transport and harvesting of suspended particles using modulated ultrasound. Ultrasonics 29: 439-44.CrossRefGoogle Scholar
  60. Woodside SM, Bowen BD and Piret JM (1997) Measurement of ultrasonic forces for particle-liquid separations. AIChE J 43: 1727-1736.CrossRefGoogle Scholar
  61. Woodside SM, Piret JM, Gröschl M, Benes E and Bowen B (1998), Acoustic force distribution in resonators for ultrasonic particle separation. AIChE J 44: 1976-1986.CrossRefGoogle Scholar
  62. Yabannavar VM, Singh V and Connelly NV (1992) Mammalian cell retention in a spinfilter perfusion bioreactor. Biotechnol Bioeng 40: 925-933.CrossRefGoogle Scholar
  63. Yabannavar VM, Singh V and Connelly NV (1994) Scaleup of spinfilter perfusion bioreactor for mammalian cell retention. Biotechnol Bioeng 43: 159-164.CrossRefGoogle Scholar
  64. Zhang S, Handa-Corrigan A and Spier RE (1993) A comparison of oxygenation methods for high-density perfusion cultures of animal cells. Biotechnol Bioeng 41: 685-692.CrossRefGoogle Scholar
  65. Zydney AL and Colton CK (1984) A red cell deformation model for hemolysis in cross flow membrane plasmapheresis. Chem Eng Commun 30: 191-207.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Steven M. Woodside
    • 1
  • Bruce D. Bowen
    • 1
  • James M. Piret
    • 1
  1. 1.Biotechnology Laboratory and Department of Chemical and Bio- Resource EngineeringUniversity of British ColumbiaVancouverCanada

Personalised recommendations