Advertisement

Journal of Computer-Aided Molecular Design

, Volume 13, Issue 5, pp 469–483 | Cite as

Design criteria for molecular mimics of fragments of the β-turn. 1. Cα atom analysis

  • S.L. Garland
  • P.M. Dean
Article

Abstract

Peptides represent an extensive class of biologically active molecules. They may be used as leads in the development of novel therapeutic agents provided the pharmacophoric information present within them can be translated into non-peptide analogs that lack the peptide backbone and are stable to proteolysis. This is the rationale for peptidomimetic drug design. Frequently, the β-turn has been implicated as a conformation important for biological recognition of peptides. Empirical evidence from known peptidomimetics, coupled with a theoretical model of peptide binding and the observation that glycine and proline residues are common within the β-turn, has suggested the design of molecules to mimic placement of between two and four of the side-chains. The moderate number of different β-turn conformations, combined with the combinatoric nature of side-chain selection complicates the procedure. In this paper, cluster analysis has been used to classify the arrangement of C atoms about the various fragments of the β-turn. Recombination of the observed patterns provides a general model for the β-turn which may be used as an effective screen for potential peptidomimetic scaffolds in chemical databases.

beta turn data mining drug design molecular similarity peptidomimetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    König, W., Peptide and Protein Hormones: Structure, Regulation, Activity, VCH, Weinheim, 1993.Google Scholar
  2. 2.
    Taylor, M.D. and Amidon, G.L. (Eds) Peptide-Based Drug Design: Controlling Transport and Metabolism, ACS, Washington, DC, 1995.Google Scholar
  3. 3.
    Stephenson, S.L. and Kenny, A.J., Biochem. J., 241 (1987) 237.Google Scholar
  4. 4.
    Kahn, M., Synlett., 11 (1993) 821.Google Scholar
  5. 5.
    Giannis, A. and Kolter, T., Angew. Chem. Int. Ed. Engl., 32 (1993) 1244.Google Scholar
  6. 6.
    Gante, J., Angew. Chem. Int. Ed. Engl., 33 (1994) 1699.Google Scholar
  7. 7.
    Damewood, J.R., Rev. Comp. Chem., 9 (1996) 1.Google Scholar
  8. 8.
    Goodman, M. and Ro, S., In Wolf, M.E. (Ed.) Peptidomimetics for drug design, Vol. 1, Burger' Medicinal Chemistry and Drug Discovery, pp. 803–861.Google Scholar
  9. 9.
    Farmer, P.S. (1980) In Ariëns, E. J., Drug Design, Vol. 10, Academic Press, New York, NY, 1980, pp. 119–143.Google Scholar
  10. 10.
    Beck-Sickinger, A.G., Wieland, H.A., Wittneben, H., Willim, K.D., Rudolf, K. and Jung, G., Eur. J. Biochem., 225 (1994) 947.Google Scholar
  11. 11.
    Peeters, T.L., Macielag, M.J., Depoortere, I., Konteatis, Z., Vantrappen, G., Lessor, R. and Florance, J., Regul. Pept., 40 (1992) 226.Google Scholar
  12. 12.
    Tam, J.P., Liu, W., Zhang, J.-W., Galantino, M., Bertolero, F., Christiani, C., Vaghi, F. and de Castiglione, R., Peptides, 15 (1994) 703.Google Scholar
  13. 13.
    Wüthrich, K., NMR of Proteins and Nucleic Acids, John Wiley, New York, NY, 1991.Google Scholar
  14. 14.
    Rose, G.D., Gierasch, L.M. and Smith, J.A., Adv. Protein Chem., 37 (1985) 1.Google Scholar
  15. 15.
    Dyson, H.J., Cross, K.J., Houghton, R.A., Wilson, I.A., Wright, P.E. and Lerner, R.A., Nature, 318 (1985) 480.Google Scholar
  16. 16.
    Veber, D.F., Freidinger, R.M., Perlow, D.S., Paleveda, W.J., Holly, F.W., Strachen, R.G., Nutt, R.F., Arison, B.H., Homnick, C., Randall, W.C., Glitzer, M.S., Saperstein, R. and Hirschmann, R., Nature, 292 (1981) 55.Google Scholar
  17. 17.
    Kopple, K.D., In Rich, D.H. and Gross, E. (Eds) Peptides: Synthesis, Structure, Function, Pierce Chemical Co., Rockford, IL, 1981, pp. 295–298.Google Scholar
  18. 18.
    Momany, F.A., J. Am. Chem. Soc., 98 (1976) 2990.Google Scholar
  19. 19.
    Walter, R., Fed. Proc., 36 (1977) 1872.Google Scholar
  20. 20.
    Fox, J.W., Vavarek, R.J., Tu, A.T. and Stewart, J.M., Peptides, 1 (1982) 193.Google Scholar
  21. 21.
    Bradbury, A.F., Smythe, D.G. and Snell, C.R., Nature, 260 (1976) 165.Google Scholar
  22. 22.
    Ball, J.B., Hughes, R.A., Alewood, P.F. and Andrews, P.R., Tetrahedron, 49 (1993) 3467.Google Scholar
  23. 23.
    Ball, J.B. and Alewood, P.F., J. Mol. Recogn., 3 (1990) 55.Google Scholar
  24. 24.
    Garland, S.L. and Dean, P.M., J. Comput.-Aided Mol. Design, 13 (1999) 485.Google Scholar
  25. 25.
    Milner-White, E.J., Trends Pharmacol. Sci., 10 (1989) 70.Google Scholar
  26. 26.
    Wilmot, C.M. and Thornton, J.M., J. Mol. Biol., 203 (1988) 221.Google Scholar
  27. 27.
    Wilmot, C.M. and Thornton, J.M., Protein Eng., 3 (1990) 479.Google Scholar
  28. 28.
    SYBYL 6.4, 1997, Tripos Associates Inc., St. Louis, MO.Google Scholar
  29. 29.
    McLachlan, A.D., J. Mol. Biol., 128 (1979) 49.Google Scholar
  30. 30.
    Ward, J.H., J. Am. Stat. Assoc., 58 (1963) 236.Google Scholar
  31. 31.
    Mojena, R., Comput. J., 20 (1977) 359.Google Scholar
  32. 32.
    Abola, E.E., Bernstein, F.C., Bryant, S.H., Koetzle, T.F. and Weng, J., In Allen, F.H., Bergerhoff, G. and Sievers, R. (Eds), Crystallographic Databases: Information Content, Software Systems, Scientific Applications, Data Commission of the International Union of Crystallography, Cambridge, 1987, pp. 107–132.Google Scholar
  33. 33.
    Ripka, W.C., de Lucca, G.V., Bach, A.C., Pottorf, R.S. and Blaney, J.M., Tetrahedron, 49 (1993) 3609.Google Scholar
  34. 34.
    Weininger, D., J. Chem. Inf. Comput. Sci., 28 (1988) 31.Google Scholar
  35. 35.
    Weininger, D., Weininger, A. and Weininger, J. L., J. Chem. Inf. Comput. Sci., 29 (1989) 97.Google Scholar
  36. 36.
    Rusinko, A., Skell, J.M., Balducci, R., McGarity, C.M. and Pearlman, R.S., Concord: a program for the rapid generation of high-quality approximate 3-D molecular structures, Tripos Associates, St. Louis, MO, 1988.Google Scholar
  37. 37.
    Hirschmann, R., Sprengeler, P.A., Kawasaki, T., Leahy, J.W., Shakespeare, W.C. and Smith, A.B., Tetrahedron, 49 1993) 3665.Google Scholar
  38. 38.
    Chemical Design Ltd., Chipping Norton, U.K.Google Scholar
  39. 39.
    Hoyt, M.J. and Bartlett, P.A., J. Am. Chem. Soc., 120 (1998) 4600.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • S.L. Garland
    • 1
  • P.M. Dean
    • 1
  1. 1.Drug Design Group, Department of PharmacologyUniversity of Cambridge

Personalised recommendations