Skip to main content
Log in

Rapid Anisotropic Diffusion Using Space-Variant Vision

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Many computer and robot vision applications require multi-scale image analysis. Classically, this has been accomplished through the use of a linear scale-space, which is constructed by convolution of visual input with Gaussian kernels of varying size (scale). This has been shown to be equivalent to the solution of a linear diffusion equation on an infinite domain, as the Gaussian is the Green's function of such a system (Koenderink, 1984). Recently, much work has been focused on the use of a variable conductance function resulting in anisotropic diffusion described by a nonlinear partial differential equation (PDE). The use of anisotropic diffusion with a conductance coefficient which is a decreasing function of the gradient magnitude has been shown to enhance edges, while decreasing some types of noise (Perona and Malik, 1987). Unfortunately, the solution of the anisotropic diffusion equation requires the numerical integration of a nonlinear PDE which is a costly process when carried out on a uniform mesh such as a typical image. In this paper we show that the complex log transformation, variants of which are universally used in mammalian retino-cortical systems, allows the nonlinear diffusion equation to be integrated at exponentially enhanced rates due to the nonuniform mesh spacing inherent in the log domain. The enhanced integration rates, coupled with the intrinsic compression of the complex log transformation, yields a speed increase of between two and three orders of magnitude, providing a means of performing rapid image enhancement using anisotropic diffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alvarez, L., Lion, P.-L., and Morel, J.-M. 1992. Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM Journal of Numerical Analysis, 29(3):845-866.

    Google Scholar 

  • Alvarez, L. and Mazorr, L. 1994. Signal and image restoration using shock filters and anisotropic diffusion. SIAM Journal of Numerical Analysis, 31(2):590-605.

    Google Scholar 

  • Bonmassar, G. and Schwartz, E.L. 1994. Geometric invariance in space-variant vision systems: The exponential chirp transform. In Proc. of the Int. Conf. on Pattern Recognition, ICPR-12, pp. 204-207.

  • Bonmassar, G. and Schwartz, E. 1995. Space-variant fourier analysis: The exponential chirp transform. IEEE Transactions on Pattern Analysis and Machine Intelligence, submitted.

  • Bonmassar, G. and Schwartz, E. 1996a. Fourier analysis and cortical architectures: The exponential chirp transform. Real Time Imaging, in press.

  • Bonmassar, G. and Schwartz, E.L. 1996b. Lie groups, space-variant fourier analysis and the exponential chirp transform. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, pp. 492-498.

  • Burt, P. and Adelson, E.H. 1983. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 9(4):532-540.

    Article  Google Scholar 

  • Campbell, F. and Green, D. 1965. Optical quality of the human eye. Journal of Physiology(London), 186:558-578.

    Google Scholar 

  • Catte, F., Lions, P.-L., Morel, J.-M., and Coll, T. 1992. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal of Numerical Analysis, 29(1):182-193.

    Google Scholar 

  • Churchill, R.V. and Brown, J.W. 1984. Complex Variables and Applications. McGraw-Hill Book Company: New York.

    Google Scholar 

  • Cohen, M.A. and Grossberg, S. 1984. Neural dynamics of brightness perception: Features, boundaries, diffusion, and resonance. Perception and Psychophysics, 36:428-456.

    Google Scholar 

  • Cottet, G.-H. and Germain, L. 1993. Image processing through reaction combined with nonlinear diffusion. Mathematics of Computation, 61(204):659-673.

    Google Scholar 

  • Dang, T., Olivier, J., and Maitre, H. 1994. An image segmentation technique based on edge preserving smoothing filter and anisotropic diffusion. In Proc. of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 65-69.

  • Daniel, P.M. and Whitteridge, D. 1961. The representation of the visual field on the cerebral cortex in monkeys. Journal of Physiology, 159:203-221.

    Google Scholar 

  • El-Fallah, A.I. and Ford, G.E. 1994. Nonlinear adaptive image filtering based on inhomogeneous diffusion and differential geometry. SPIE Image and Video Processing II, 2182:49-63.

    Google Scholar 

  • Engquist, B., Lotstedt, P., and Sjogreen, B. 1989. Nonlinear filters for efficient shock computation. Mathematics of Computation, 52(186):509-537.

    Google Scholar 

  • Fischl, B. and Schwartz, E.L. 1996. Learned adaptive nonlinear filtering for anisotropic diffusion approximation in image processing. In Int. Conf. on Pattern Recognition, Vienna, Austria.

  • Fischl, B. and Schwartz, E. 1997a. Learning an integral equation approximation to nonlinear anisotropic diffusion in image processing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(4):342-352.

    Article  Google Scholar 

  • Fischl, B. and Schwartz, E.L. 1997b. Fast adaptive alternatives to nonlinear diffusion in image enhancement: Green’s function approximators and nonlocal filters. In First International Conference on Scale-Space Theory in Computer Vision, Utrecht University, Utrecht, the Netherlands.

    Google Scholar 

  • Fischl, B., Cohen, M.A., and Schwartz, E.L. 1997. The local structure of space-variant images. Neural Networks, 10(4):815.

    Article  Google Scholar 

  • Gerrits, H. and Vendrik, J. 1970. Simultaneous contrast, filling-in process and information processing in man’s visual system. Experimental Brain Research, 11:411-430.

    Article  Google Scholar 

  • Grossberg, S. and Mingolla, E. 1985. Neural dynamics of form perception: Boundary completion, illusory figures, and neon color spreading. Psychological Review, 92(2):173-211.

    Article  Google Scholar 

  • Grossberg, S. and Todorovic, D. 1988. Neural dynamics of 1-D and 2-D brightness perception: A unified model of classical and recent phenomena. Perception and Psychophysics, 43:241-277.

    Google Scholar 

  • Haberman, R. 1987. Elementary Applied Partial Differential Equations. 2nd edition. Prentice-Hall, Inc.: Englewood Cliffs, NJ.

    Google Scholar 

  • Hummel, A. 1986. Representations based on zero-crossings in scalespace. In Readings in Computer Vision: Issues, Problems, Principles and Paradigms, M. Fischler and O. Firschein (Eds.), Morgan Kaufmann: Los Angeles.

    Google Scholar 

  • Illner, R. and Neunzert, H. 1993. Relative entropy maximization and directed diffusion equations. Mathematical Methods in the Applied Sciences, 17:545-554.

    Google Scholar 

  • Kacur, J. and Mikula, K. 1995. Solution of nonlinear diffusion appearing in image smoothing and edge detection. Applied Numerical Mathematics, 50:47-59.

    Article  Google Scholar 

  • Koenderink, J. 1984. The structure of images. Biological Cybernetics, 50:363-370.

    Article  Google Scholar 

  • Lee, T.S. 1995. A bayesian framework for understanding texture segmentation in the primary visual cortex. Vision Research, 35(18):2643.

    Article  Google Scholar 

  • Li, X. and Chen, T. 1994. Nonlinear diffusion with multiple edginess thresholds. Pattern Recognition, 27(8):1029-1037.

    Article  Google Scholar 

  • Malladi, R. and Sethian, J.A. 1995. Image processing via level set curvature flow. In Proc. of the National Academy of Sciences, vol. 92, pp. 7046-7050.

    Google Scholar 

  • Marr, D. and Hildreth, E. 1980. Theory of edge detection. In Proc. of the Royal Society of London, vol. B 207, pp. 187-217.

    Google Scholar 

  • Merigan, W.H. and Katz, L.M. 1990. Spatial resolution across the macaque retina. Vision Research, 30(7):985-991.

    Article  Google Scholar 

  • Messner, R. and Szu, H. 1986. An image processing architecture for real time generation of scale and rotation invariant patterns. Computer Vision, Graphics and Image Processing, 31:50-66.

    Google Scholar 

  • Nitzberg, M. and Shiota, T. 1992. Nonlinear image filtering with edge and corner enhancement. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(8):826-833.

    Article  Google Scholar 

  • Nördstrom, N.K. 1990. Biased anisotropic diffusion: A unified regularization and diffusion approach to edge detection. Image and Vision Computing, 8(4):318-327.

    Google Scholar 

  • Oram, M.W. and Perrett, D.I. 1992. Time course of neural responses discriminating different views of the face and head. Journal of Neurophysiology, 68(1):70-84.

    Google Scholar 

  • Osher, S. and Rudin, L.I. 1990. Feature-oriented image enhancement using shock filters. SIAM Journal of Numerical Analysis, 27(4):919-940.

    Google Scholar 

  • Pauwels, E.J., Proesmans, M., Gool, L.J.V., Moons, T., and Oosterlinck, A. 1993. Segmentation and image enhancement using coupled anisotropic diffusion. SPIE, 2094:836-847.

    Google Scholar 

  • Perona, P. and Malik, J. 1987. Scale space and edge detection using anisotropic diffusion. In Proc. of the IEEE Computer Society Workshop on Computer Vision, Miami, FL, pp. 16-27.

  • Perona, P. and Malik, J. 1990. Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Analysis and Machine Intell., 12(7):629-639.

    Article  Google Scholar 

  • Perona, P., Shiota, T., and Malik, J. 1994. Anisotropic diffusion. In Geometry Driven Diffusion in Computer Vision, B.M.T.H. Romeny (Ed.), Kluwer, chap. 3, pp. 73-92.

  • Price, C.B., Wambacq, P., and Oosterlinck, A. 1990. Image enhancement and analysis with reaction-diffusion paradigm. IEE Proceedings, 137 Pt. I(3):136-145.

    Google Scholar 

  • Rojer, A.S. and Schwartz, E.L. 1990. Design considerations for a space-variant visual sensor with complex-logarithmic geometry. In 10th Int. Conf. on Pattern Recognition, vol. 2, pp. 278-285.

    Article  Google Scholar 

  • Rojer, A.S. and Schwartz, E.L. 1992. Biological basis for spacevariant sensor design II: Implications for VLSI sensor design. In SPIE Program on Computer Vision and Intelligent Robots IX: Advances in Intelligent Machines.

  • Sandini, G. and Dario, P. 1989. Active vision based on space-variant sensing. In Int. Symp. on Robotics Research.

  • Sandini, G., Bosero, F., Bontino, F., and Ceccherini, A. 1989. The use of an anthropomorphic visual sensor for motion estimation and object tracking. In Proc. of OSA Optical Meeting on Image Understanding and Machine Vision.

  • Schenker, P., Cande, E., Wong, K., and Patternson, W. 1981. New sensor geometries for image processing: computer vision in the polar exponential grid. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, pp. 1144-1148.

  • Schwartz, E. 1994. Computational studies of the spatial architecture of primate visual cortex: Columns, maps, and protomaps. In PrimaryVisual Cortex in Primates, A. Peters, and K. Rocklund (Eds.), vol. 10 of Cerebral Cortex, chap. 9. Plenum Press: New York.

    Google Scholar 

  • Schwartz, E.L. 1977. Spatial mapping in the primate sensory projection: Analytic structure and relevance to perception. Biological Cybernetics, 25:181-194.

    Google Scholar 

  • Schwartz, E.L. 1980. Computational anatomy and functional architecture of striate cortex: A spatial mapping approach to perceptual coding. Vision Research, 20:645-669.

    Article  Google Scholar 

  • Shah, J. 1996. A common framework for curve evolution, segmentation and anisotropic diffusion. In Proc. IEEE Computer Soc. Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 136-142.

  • Talbot, S.A. and Marshall,W.H. 1941. Physiological studies on neural mechanisms of visual localization and discrimination. American Journal of Ophthalmology, 24:1255-1263.

    Google Scholar 

  • Thorpe, S.J. and Imbert, M. 1989. Biological constraints on connectionist models. In Connectionism in Perspective, R. Pfeifer, Z. Schreter, and F. Fogelman-Soulie (Eds.), Elsevier, Amsterdam, pp. 63-92.

    Google Scholar 

  • Vogels, R. and Orban, G.A. 1991. Quantitative study of striate single unit responses in monkey performing an orientation task. Experimental Brain Research, 84:1-11.

    Article  Google Scholar 

  • Wässle, H., Grünert, U., Röhrenbeck, J., and Boycott, B.B. 1990. Retinal ganglion cell density and cortical magnification factor in the primate. Vision Research, 30(11):1897-1911.

    Article  Google Scholar 

  • Weiman, C. 1988. 3-D sensing with polar exponential sensory arrays. In SPIE Conf. on Digital and Optical Shape Representation and Pattern Recognition.

  • Wertheim, T. 1894. Uber die indirekte sehscharfe. Zeitschrift fur Psychologie und Physiologie der Sinnesorgane, 7:172-187.

    Google Scholar 

  • Whitaker, R.T. 1993. Geometry-limited diffusion in the characterization of geometric patches in images. CVGIP: Image Understanding, 57(1):111-120.

    Article  Google Scholar 

  • Whitaker, R.T. and Pizer, S.M. 1991. A multi-scale approach to nonuniform diffusion. Computer Vision, Graphics and Image Processing, 57:99-110.

    Google Scholar 

  • Williams, D. and Coletta, N. 1987. Cone spacing and the visual resolution limit. Journal of the Optical Society of America, 4:1514-1523

    Google Scholar 

  • Witkin, A. 1983. Scale-space filtering. In Int. Joint Conf. on Artificial Intell, Karlsruhe, Germany, pp. 1019-1021.

  • Yamamoto, H., Yeshurun, Y., and Levine, M.D. 1996. An active foveated vision system: Attentional mechanisms and scan path convergence measures. Computer Vision and Image Understanding: CVIU, 63(1):50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fischl, B., Cohen, M.A. & Schwartz, E.L. Rapid Anisotropic Diffusion Using Space-Variant Vision. International Journal of Computer Vision 28, 199–212 (1998). https://doi.org/10.1023/A:1008043919667

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008043919667

Navigation