Skip to main content
Log in

Facet diagrams for quantum similarity data

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

The objective of this work is to demonstrate that an appropriate treatment of quantum similarity matrices can reveal hidden data grouping related to relevant structural features and even to biological properties of interest. Classical scaling is used here to extract the information contained in the similarity relationships between the elements of a molecular set. Facet theory is invoked to relate, in a qualitative way, the spatial regions to structural characteristics as well as to properties of interest. Two application examples are discussed: the Cramer steriod set and a benzene, toluene and xylene derivatives set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory,Methods and Applications, ESCOM, Leiden, The Netherlands, 1993.

    Google Scholar 

  2. Van de Waterbeemd, H., In Van de Waterbeemd, H. (Ed.) Structure-Property Correlations in Drug Research, Academic Press, San Diego, CA, 1996.

    Google Scholar 

  3. Dean, P.M. (Ed.) Molecular similarity in Drug Design, Blackie Academic & Professional, London, 1995.

    Google Scholar 

  4. Carbó, R., BesalÚ, E., Amat, L. and Fradera, X., J. Math. Chem., 18 (1995) 237.

    Google Scholar 

  5. Fradera, X., Amat, L., BesalÚ, E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 25.

    Google Scholar 

  6. Lobato, M., Amat, L., BesalÚ, E. and Carbó-Dorca, R., Quant. Struct.-Act. Relat., 16 (1997) 465.

    Google Scholar 

  7. Amat, L., Robert, D., BesalÚ, E. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 38 (1998) 624.

    Google Scholar 

  8. Robert, D. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 38 (1998) 620.

    Google Scholar 

  9. Amat, L., Carbó-Dorca, R. and Ponec, R., J. Comput. Chem., 19 (1998) 1575.

    Google Scholar 

  10. Robert, D. and Carbó-Dorca, R., Il Nuovo Cimento, A111 (1998) 1311.

    Google Scholar 

  11. Ponec, R., Amat, L. and Carbó-Dorca, R., Quantum Similarity approach to LFER: Substituent and solvent effects on the acidities of carboxylic acids, Technical Report: IT-IQC-98-14.

  12. Mezey, P.G., Ponec, R., Amat, L. and Carbó-Dorca, R., Quantum Similarity approach to the characterization of molecular chirality, Technical Report: IT-IQC-98-16.

  13. For a brief review of the QSAR studies on this data set, see, for example: Robert, D., Amat, L. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 39 (1999) 333.

    Google Scholar 

  14. Urrestarazu, E., Vaes, W.H.J., Verhaar, H.J.M. and Hermens, J.L.M. J. Chem. Inf. Comput. Sci., 38 (1998) 845.

    Google Scholar 

  15. Carbó, R., Arnau, J. and Leyda, L., Int. J. Quant. Chem., 17 (1980) 1185.

    Google Scholar 

  16. BesalÚ, E., Carbó, R., Mestres, J. and Solà, M., Top. Curr. Chem., 173 (1995) 31.

    Google Scholar 

  17. Carbó, R. and BesalÚ, E. In Carbó, R. (Ed.) Molecular Similarity and reactivity: from Quantum Chemical to Phenomenological approaches, Kluwer, Dordrecht, 1995.

    Google Scholar 

  18. R. Carbó-Dorca and P. G. Mezey (Eds.) Advances in Molecular Similarity, JAI Press, Greenwich, 1996.

    Google Scholar 

  19. Löwdin, P.O., Phys. Rev., 97 (1955) 1474, 1490.

    Google Scholar 

  20. McWeeny, R., Proc. R. Soc. London, A235 (1955) 496.

    Google Scholar 

  21. Carbó, R., BesalÚ, E., Amat, L. and Fradera, X., J. Math. Chem., 19 (1996) 47.

    Google Scholar 

  22. Robert, D. and Carbó-Dorca, R., J. Chem. Inf. Comput. Sci., 38 (1998) 469.

    Google Scholar 

  23. Cox, T.F. and Cox, M.A.A., Multidimensional Scaling, Chapman & Hall, London, 1994.

    Google Scholar 

  24. Eckart, C. and Young, G., Psychometrika, 1 (1936) 211.

    Google Scholar 

  25. Young, G. and Householder, A.S., Psychometrika, 3 (1938) 19.

    Google Scholar 

  26. Carroll, J.D. and Chang, J.J., IDIOSCAL (Individual Differences in Orientation SCAling): A generalization of INDSCAL allowing idiosyncratic reference systems as well as an analytic approximation to INDSCAL. Paper presented at the spring meeting of the Psychometric Society, Princeton, NJ.

  27. Borg, I. and Shye, S., Facet Theory: form and content, Newbury Park, Sage, 1995.

    Google Scholar 

  28. Amat, L., Constans, P., BesalÚ, E. and Carbó-Dorca, R., MOLSIMIL 97, Institute of Computational Chemistry, University of Girona, Spain, 1997.

    Google Scholar 

  29. Constans, P. and Carbó, R., J. Chem. Inf. Comput. Sci., 35 (1995) 1046.

    Google Scholar 

  30. Amat, L. and Carbó-Dorca, R., J. Comput. Chem., 18 (1997) 2023.

    Google Scholar 

  31. ASA coefficients and exponents for an assorted sample of atoms can be seen and downloaded from the website: http://iqc.udg.es/cat/similarity/ASA/funcset.html

  32. GiD, Geometry and Data, a pre/postprocessor graphical interface. It can be downloaded from the CIMNE website: http://gatxan.upc.es

  33. All the steroid ASA isodensity plots shown in the paper can be seen and downloaded from: http://iqc.udg.es/cat/similarity/QSAR/facets/index.html

  34. The steroid structures can be seen and downloaded from the Gasteiger' group Website: http://schiele.organik.unierlangen.de/services/steroids/

  35. Gironés, X., Amat, L. and Carbó-Dorca, R., A comparative study of Isodensity surfaces using ab initio and ASA Density Functions. Technical Report: IT-IQC-98-30. J. Mol. Graph. Model, In press.

  36. Watt, A. and Watt, M., Advanced Animation and Rendering Techniques, Addison-Wesley, London, 1992.

    Google Scholar 

  37. Lorensen, W.E. and Cline, H.E., Comput. Graphics, 21 (1987) 163.

    Google Scholar 

  38. Kaufman, L. and Rousseeuw, P.J., CLUSFIND software package. The code includes the PAM program used in this study, and it can be downloaded from the website: http://winwww.uia.ac.be/u/statis/programs.html

  39. Dunn, J.F., Nisula, B.C. and Rodbard, D., J. Clin. Endocrinol. Metab., 53 (1981) 58.

    Google Scholar 

  40. Anzali, S., Barnickel, G., Krug, M., Sadowski, J., Wagener, M., Gasteiger, J. and Polanski, J., J. Comput.-Aided Mol. Design, 10 (1996) 521.

    Google Scholar 

  41. van Wezel, A.P. and Opperhuizen, A., Crit. Rev. Toxicol., 25 (1995) 255.

    Google Scholar 

  42. Cantor, R.S., Biochemistry, 36 (1997) 2339.

    Google Scholar 

  43. Van Leeeuwen, C.J., van der Zandt, P.T.J., Aldenberg, T., Verhaar, H.J.M. and Hermens, J.L.M., Environ. Toxicol. Chem., 11 (1992) 267.

    Google Scholar 

  44. Amat, L., Carbó-Dorca, R. and Ponec, R., J. Comput. Chem., 19 (1998) 1575.

    Google Scholar 

  45. Urrestarazu Ramos, E., Vermeer, C., Vaes, W.H.J. and Hermens, J.L.M., Chemosphere, 37 (1998) 633.

    Google Scholar 

  46. AMPAC 6.0, 1994 Semichem, 7128 Summit, Shawnee, KS 66216.D.A.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robert, D., Gironés, X. & Carbó-Dorca, R. Facet diagrams for quantum similarity data. J Comput Aided Mol Des 13, 597–610 (1999). https://doi.org/10.1023/A:1008039618288

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008039618288

Navigation