Natural Hazards

, Volume 17, Issue 2, pp 163–176 | Cite as

Physical Modelling and Human Survival in Pyroclastic Flows

  • P. J. Baxter
  • A. Neri
  • M. Todesco


Volcanic eruptions increasingly present catastrophic natural risks with hundreds of millions of people now living in areas of active volcanism and major conurbations around active eruptive centres. Interdisciplinary studies in disaster reduction have an important role in volcanic emergency management through advancing our understanding of the physical impacts of eruptive phenomena and the causes of death and injury in explosive eruptions. Numerical modelling of pyroclastic flows, amongst the most destructive of eruptive phenomena, provides new opportunities to improve the evaluation of the potential destructiveness of volcanic events and their human impacts in densely populated areas. In this work, the results of numerical modelling of pyroclastic flow propagation at Vesuvius have been analysed in terms of the physical parameters (temperature, ash in air concentration, and dynamic pressure) that are most critical for human survival. Our numerical simulations of eruptions of Vesuvius indicate that a large area exists where total destruction may not be inevitable in small to medium scale events, a finding that has prompted us to explore further the implications for human survival as part of an interdisciplinary approach to disaster reduction. The lessons of modelling at Vesuvius should be integrated into civil protection plans for other urban centres threatened by volcanoes.

volcanic risk pyroclastic flows pyroclastic surges human survival physical modelling numerical simulation Vesuvius 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, T. and Flett, J. S.: 1903, Report on the eruption of The Soufriere in St. Vincent 1902 and on a visit to Montagne Pelée in Martinique, Phil. Trans. R. Soc. London 100, 353‐553 Series A.Google Scholar
  2. Baxter, P. J., Ing, R., Falk, H., French, J., Stein, G. F., Bernstein, R. S., Merchant, J. A. and Allard, J.: 1981, Mount St. Helens Eruptions, May 18 to June 12, 1980. An overview of the acute health impact, J. Am. Med. Assoc. 246, 2585‐2589.CrossRefGoogle Scholar
  3. Baxter, P. J.: 1990, Medical effects of volcanic eruptions. 1. Main causes of death and injury, Bull. Volcanol. 52, 532‐544.CrossRefGoogle Scholar
  4. Bernstein, R. S., Baxter, P. J., Falk, H., Ing, R., Foster, L. and Frost, F.: 1986, Immediate public health concerns and actions in volcanic eruptions: lessons from the Mount St. Helens eruptions May 18-October 18, 1980, in A. S. Buist and R. S. Bernstein (eds), Health Effects of Volcanoes: an Approach to Evaluating the Health Effects of an Environmental Hazard, suppl. Amer. J. Public Health 76, 25‐37.Google Scholar
  5. Buettner, K.: 1950, Effects of extreme heat in man, J. Am. Med. Assoc. 144, 732‐738.Google Scholar
  6. Bull, J. P.: 1971, Revised analysis of mortality due to burns, Lancet 2, 1133‐1134.CrossRefGoogle Scholar
  7. Carey, S., Sigurdsson, H., Mandeville, C. and Bronto, S.: 1996, Bull. Volcanol. 57, 493‐511.Google Scholar
  8. Clark, C. J., Reid, W. H., Gilmour, W. H. and Campbell, D.: 1986, Mortality probability in victims of fire trauma: revised equation to include inhalation injury, BMJ 292, 1303‐1305.Google Scholar
  9. Desaga, H.: 1950, Experimental investigation of the action of dust, in German Aviation Medicine World War II, US Govt Printing Office, Dept. of Air Force, Washington DC, Vol 2, pp. 1188–1203.Google Scholar
  10. Ding, J. and Gidaspow, D.: 1990, A bubbling fluidization model using kinetic theory of granular flows, AIChE J. 36, 523‐538.CrossRefGoogle Scholar
  11. Dobran, F., Neri, A. and Macedonio, G.: 1993, Numerical simulation of collapsing volcanic columns, J. Geophys. Res. 98, 4231‐4259.Google Scholar
  12. Dobran, F., Neri. A. and Todesco M.: 1994, Assessing the pyroclastic flow hazard at Vesuvius, Nature 367, 551‐554.CrossRefGoogle Scholar
  13. Eisele, J. W., O'Halloran, R. L., Reay, D. T., Lindhock, G. R., Lewman, L. V. and Brady, W. J.: 1981, Deaths during the May 18, 1980, eruption of Mount St. Helens, New Eng. J. Med. 305, 931‐936.Google Scholar
  14. Fisher, R. V.: 1979, Models of pyroclastic surges and pyroclastic flows, J. Volcanol. Geotherm. Res. 6, 305‐318.CrossRefGoogle Scholar
  15. Fisher, R. V. and Schmincke, H. V.: 1984, Pyroclastic Rocks, Springer Verlag, New York.Google Scholar
  16. Hodkinson J. R.: 1996, The optical measurement of aerosol, in C. N. Davies (ed.), Aerosol Science, Academic Press, London, pp. 287‐295.Google Scholar
  17. Horn, M.: 1989, DANIEL: a computer code for high speed dusty gas with multiple particle sizes, Report LA-11445-MS, Los Alamos National Laboratory, Los Alamos New Mexico.Google Scholar
  18. Johnson, R. W. and Threlfall, N. A.: 1985, Volcano Town. The 1937‐43 Rabaul Eruptions, Robert Brown & Assoc., Bathurst.Google Scholar
  19. Killick, E. M. J.: 1932, Physiological response to breathing hot air, J. Hygiene 32, 332‐339.Google Scholar
  20. Kobayashi, K., Hirano, A., Murakami, R., Yamamoto, M., Shidayama, R., Fujimoto, H., Iio, Y., Fujii, T., Haseba, S. and Sakito, T.: 1993, Japanese J. Burn Injury 19, 226‐235, (in Japanese).Google Scholar
  21. Lacroix, A.: 1904, La Montagne Pelée et ses Eruptions, Masson, Paris.Google Scholar
  22. Lawrence, J. C. and Bull, J. P.: 1976, Thermal conditions which cause skin burns, Engineering in Medicine 5, 61‐63.Google Scholar
  23. Neri, A. and Dobran, F.: 1994, Influence of eruption parameters on the thermofluid dynamics of collapsing volcanic columns, J. Geophys. Res. 99, 11833‐11857.CrossRefGoogle Scholar
  24. Neri, A. and Macedonio, G.: 1996a, Numerical simulation of collapsing volcanic columns with particles of two sizes, J. Geophys. Res. 101, 8153‐8174.CrossRefGoogle Scholar
  25. Neri, A. and Macedonio, G.: 1996b, Physical modeling of collapsing volcanic columns and pyroclastic flows, in R. Tilling and R. Scarpa (eds), Monitoring and Mitigation of Volcano Hazards, Springer, Amsterdam, pp. 389‐427.Google Scholar
  26. Nuovo Colombo: 1990, Carichi nelle Costruzioni, Manuale dell'Ingegnere, Hoepli ed., Milan, pp. E22‐E32.Google Scholar
  27. Papale, P. and Dobran, F.: 1993, Modeling of the ascent of magma during the plinian eruption of Vesuvius in 79 AD, J. Volcanol. Geotherm. Res. 58, 101‐132.CrossRefGoogle Scholar
  28. Parshley, P. F., Kiessling, P. J., Antonius, J. A., Connell, R. S., Miller, S. H. and Green, F. H. Y.: 1982, Pyroclastic flow injury. Mount St. Helens, May 18, 1980, Am. J. Surg. 143, 565‐568.CrossRefGoogle Scholar
  29. Purser, D. A.: 1995, Section 2 in SFPE Handbook of Fire Protection Engineering, 2nd edn, pp. 85‐146, National Fire Protection Association, Quincy MA.Google Scholar
  30. Quality of Urban Air Review Group: 1996, Airborne Particulate Matter in the United Kingdom, University of Birmingham, Birmingham.Google Scholar
  31. Rose, W. I., Chuan, R. L., Cadge, R. D. and Woods, D. C.: 1980, Small particles in volcanic eruption clouds, Am. J. Science 280, 671‐696.Google Scholar
  32. Rosenbaum, J. G. and Waitt, R. B.: 1981, The 1980 eruptions of Mount St. Helens, Washington. Summary of eye witness accounts of theMay 18 eruption, in P. W. Lipman and D. R. Mullineaux, The 1980 Eruptions of Mount St. Helens, Washington, US Govt Printing Office, Washington DC.Google Scholar
  33. Rosi, M., Principe, C. and Vecci, R.: 1993, The 1631 Vesuvian eruption: a reconstruction based on historical and stratigraphical data, J. Volcanol Geotherm. Res. 58, 151‐182.CrossRefGoogle Scholar
  34. Rosi, M.: 1996, Quantitative reconstruction of recent volcanic activity: a contribution to forecasting of future eruptions, in R. Tilling and R. Scarpa (eds), Monitoring and Mitigation of Volcano Hazards, Springer, Amsterdam, pp. 631‐674.Google Scholar
  35. Santacroce, R.: 1983, A general model for the behavior of the Somma-Vesuvius volcanic complex, J. Volcanol. Geotherm. Res. 17, 237‐248.CrossRefGoogle Scholar
  36. Seaton, A., MacNee, W., Donaldson, K. and Godden, D.: 1995, Particulate air pollution and acute health effects, Lancet 345, 176‐178.CrossRefGoogle Scholar
  37. Shimabara Onsen Hospital. Volcanic Disaster of Shimabara in 1991, Hospital Report (undated), (in japanese).Google Scholar
  38. Sparks, R. S. J.: 1976, Grain size variations in ignimbrites and applications for the transport of pyroclastic flows, Sedimentology 23, 147‐188.Google Scholar
  39. Taylor, G. A. M.: 1958, The 1951 Eruption of Mount Lamington, Papua, Australian Dept of National Developments, Canberra, Bureau of Mineral Resources, Geology and Geophysics, Bull. No. 38.Google Scholar
  40. Tilling, R. I. and Lipman, P. W.: 1993, Lessons in reducing volcanic risks, Nature 364, 277‐280.CrossRefGoogle Scholar
  41. Valentine, G. A and Wohletz, K. H.:, 1989, Enviromental hazards of pyroclastic flows determined by numerical models, Geology 17, 641‐644.CrossRefGoogle Scholar
  42. Walker, G. P. L.: 1981, Generation and dispersal of fine ash and dust by volcanic eruptions, J. Volcanol. Geotherm. Res. 11, 81‐92.Google Scholar
  43. Will, J.: 1903, Report on Medical Relief Expedition to Martinique and St. Vincent in Aid of the Sufferers from Volcanic Eruptions, May 1902, HMSO, London.Google Scholar
  44. Worcester, D. C.: 1912, Taal volcano and its recent destructive eruption, Nat. Geogr. Mag. 23, 313–367.Google Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • P. J. Baxter
    • 1
  • A. Neri
    • 2
    • 2
  • M. Todesco
    • 3
    • 4
  1. 1.Department of Community MedicineUniversity of Cambridge, Clinical School, Addenbrooke's HospitalCambridgeEngland
  2. 2.Consiglio Nazionale delle Ricerche, Gruppo Nazionale per la Vulcanologia, Centro di Studio per la Geologia Strutturale e Dinamica dell'AppenninoPisaItaly
  3. 3.Dipartimento di Scienze della TerraUniversità degli Studi di PisaPisaItaly and
  4. 4.Consiglio Nazionale delle Ricerche, Gruppo Nazionale per la VulcanologiaCentro di Studio per la Geologia Strutturale e Dinamica dell'AppenninoPisaItaly

Personalised recommendations