Skip to main content
Log in

Methodological developments and strategies for a fast flexible superposition of drug-size molecules

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

An alternative to experimental high through-put screening is the virtual screening of compound libraries on the computer. In absence of a detailed structure of the receptor protein, candidate molecules are compared with a known reference by mutually superimposing their skeletons and scoring their similarity. Since molecular shape highly depends on the adopted conformation, an efficient conformational screening is performed using a knowledge-based approach. A comprehensive torsion library has been compiled from crystal data stored in the Cambridge Structural Database. For molecular comparison a strategy is followed considering shape associated physicochemical properties in space such as steric occupancy, electrostatics, lipophilicity and potential hydrogen-bonding. Molecular shape is approximated by a set of Gaussian functions not necessarily located at the atomic positions. The superposition is performed in two steps: first by a global alignment search operating on multiple rigid conformations and then by conformationally relaxing the best scored hits of the global search. A normalized similarity scoring is used to allow for a comparison of molecules with rather different shape and size. The approach has been implemented on a cluster of parallel processors. As a case study, the search for ligands binding to the dopamine receptor is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brandt, D.W., Drug Discov. Today, 3 (1998) 61.

    Google Scholar 

  2. Blaney, J.M. and Dixon, J.S., Perspect. Drug Discov. Design, 1 (1993) 301; Colman, P.M., Curr. Opin. Struct. Biol., 4 (1994) 868; Kuntz, I.D., Science, 257 (1992) 1078; Lengauer, T. and Rarey, M., Curr. Opin. Struct. Biol., 6 (1996) 402; Lybrand, T.P., Curr. Opin. Struct. Biol., 5 (1995) 224.

    Google Scholar 

  3. Downs, G.M. and Willet, P., In 'Reviews in Computational Chemistry' Vol. 7, pp. 1–66, Lipkowitz, K. and Boyd, D. (Eds), VCH; Good, A.C. and Mason, J.S., In 'Reviews in Computational Chemistry' Vol. 7, pp. 67–118, Lipkowitz, K. and Boyd, D. (Eds), VCH; Bures, M.G., Practical Application of Computer-Aided Drug Design, pp. 39–72, Marcel Dekker, New York, NY, USA (1997).

    Google Scholar 

  4. Hahn, M., J. Chem. Inf. Comput. Sci., 37 (1997) 80; Perry, N.C. and v. Geerestein, V.J., J. Chem. Inf. Comput. Sci., 32 (1992) 607; Parretti, M.F., Kroemer, R.T., Rothmann, J.H. and Richards, W.G., J. Comput. Chem., 18 (1997) 1344; Mc-Martin, C. and Bohacek, R.S., J. Comput.-Aided Mol. Design, 9 (1995) 237; Kato, Y., Inoue, A., Yamada, M., Tomioka, N. and Itai, A., J. Comput.-Aided Mol. Design, 6 (1992) 475.

    Google Scholar 

  5. Perkins, T.D.J., Mills, J.E.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 9 (1995) 479; Hurst, T., J. Chem. Inf. Comput. Sci., 34 (1994) 190; Thorner, D.A., Wild, D.J., Willett, P. and Wright, P.M., J. Chem. Inf. Comput. Sci., 36 (1996) 900; Jones, G., Willett, P. and Glen, R.C., J. Comput.-Aided Mol. Design, 9 (1995) 532.

    Google Scholar 

  6. Klebe, G. and Mietzner, T., J. Comput.-Aided Mol. Design, 8 (1994) 583.

    Google Scholar 

  7. Allen, F.H. and Kennard, O., Acc. Chem. Res., 16 (1983) 146.

    Google Scholar 

  8. Klebe, G., in 'Structure Correlation', Eds. Bürgi, H.B. and Dunitz, J.D., VCH (1994) p. 543.

  9. DeClerq, P.J., Hoflack, J. and Cauwbergh, S., QCPE Program No. QCMP079.

  10. Sadowski, J., Rudolph, C. and Gasteiger, J., Tetrahedron Comput. Methodol., 3 (1990) 537.

    Google Scholar 

  11. Program SYBYL from Tripos Ass., Inc, St. Louis, MO, USA.

  12. The authors are grateful to Dr. G. Vriend (EMBL, Heidelberg, Germany) for providing the data of tripeptide fragments.

  13. Vriend, G., J. Mol. Graph., 8 (1990) 52.

    Google Scholar 

  14. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, E.F., Brice, M.D., Rogers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  15. The following small molecule ligands have been used (labeled by their Refcodes in the PDB):1cbx, 1dhf, 1dwc, 1dwd, 1dwe, 1eed, 1ent, 1gpy, 1hiv, 1hos, 1ivp, 1ivq, 1pph, 1stp, 1thl, 1tlp, 1tmn, 1tpp, 2er7, 2hat, 2mip, 2r04, 2r06, 2r07, 2rm2, 2rr1, 2rs1, 2rs3, 2rs5, 2tmn, 3cpa, 3gpb, 3tmn, 4dfr, 4er1, 4er2, 4gpb, 4hvp, 4phv, 4tapap, 4tln, 4tmn, 5er1, 5er2, 5gpb, 5hvp, 5tln, 5tmn, 6cpa, 7cpa, 7hvp, 8cpa, 8hvp, 9hvp, lysozyme: α-, β-N-acetylglucosamide, thermolysin: β-ppp, cbzphe, thiorphan, retro-thiorphan.

  16. Clark, M., Cramer, III, R.D. and v. Opdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Google Scholar 

  17. The following subset of ligands from [15] has been used: 1cbx, 1dhf, 1dwd, 1dwe, 1gpy, 1pph,1stp, 1thl, 1tlp, 1tmn, 2tmn, 3cpa, 3gpb, 3tmn, 4dfr, 4tln, 4tmn, 4-tapap, 5gpb, 5tln, 5tmn, 6cpa, 7cpa, 8cpa, β-ppp, cbzphe, thiorphan, retro-thiorphan.

  18. Klebe, G., Perspect. Drug Discov. Design, 3 (1995) 85.

    Google Scholar 

  19. Kearsley, S.K. and Smith, G.M., Tetrahed. Comput. Meth., 3 (1990) 615.

    Google Scholar 

  20. Dewar, M.J.S., Zoebisch, E.G., Healy, E.F. and Stewart, J.J.P., J. Am. Chem. Soc., 107 (1985) 3902.

    Google Scholar 

  21. Viswanadhan, V.N., Ghose, A.K., Revankar, G.R. and Robins, R.K., J. Chem. Inf. Comput. Sci., 29 (1989) 163.

    Google Scholar 

  22. Klebe, G., Mietzner, T. and Weber, F., J. Comput.-Aided Mol. Design, 8 (1994) 751.

    Google Scholar 

  23. Martin, Y.C., Bures, M.G., Danaher, E.A., DeLazzer, J., Lico, I. and Pavlik, P., J. Comput.-Aided Mol. Design, 7 (1993) 83.

    Google Scholar 

  24. Klebe, G., J. Mol. Biol., 237 (1994) 212.

    Google Scholar 

  25. Bruno, I.J., Cole, J.C., Lommerse, J.P.M., Rowland, R.S., Taylor, R. and Verdonk, M.L., J. Comput.-Aided Mol. Design, 11 (1997) 525.

    Google Scholar 

  26. Böhm, H.J., Brode, S., Hesse, U. and Klebe, G., Chem. Eur. J., 2 (1996) 1509.

    Google Scholar 

  27. Good, A.C. and Richards, W.G., J. Chem. Inf. Comput. Sci., 33 (1993) 112.

    Google Scholar 

  28. Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Comput. Chem., 18 (1997) 934; Mestres, J., Rohrer, D.C. and Maggiora, G.M., J. Mol. Graphics, 15 (1997) 114; Leherte, L., Latour, T. and Vercauteren, D., J. Comput.-Aided Mol. Design, 10 (1996) 55; Grant, J.A., Gallardo, M.A. and Pickup, B.T., J. Comput. Chem., 17 (1996) 1653; Lemmen, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 11 (1997) 357; Lemmen, C., Hiller, C. and Lengauer, T., J. Comput.-Aided Mol. Design, 12 (1998) 491; Nissink, J.W.M., Verdonk, M.L., Kroon, J., Mietzner, T. and Klebe, G., J. Comput. Chem., 18 (1997) 638.

    Google Scholar 

  29. Badger, J., Minor, I., Kremer, M.J., Oliveira, M.A., Smith, T.J., Griffith, J.P., Guerin, D.M.A., Krishaswamy, S., Luo, M., Rossmann, M.G., McKinlay, M.A., Diana, G.D., Dutko, F.J., Fancher, M., Rueckert, R.R. and Heinz, B.A., Proc. Natl. Acad. Sci. USA, 85 (1988) 3304.

    Google Scholar 

  30. Klebe, G., In Kubinyi, H. (Ed.), 3D QSAR in Drug Design, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  31. Gerber, P.R. and Müller, K., J. Comput.-Aided Mol. Design, 9 (1995) 251.

    Google Scholar 

  32. Ujvary, I., BIOSTER, available through Synopsys Scientific Systems Ltd., 175 Woodhouse Lane, Leeds, UK.

  33. The Available Chemicals Directory is distributed through Molecular Design Ltd., San Leandros, CA (USA).

  34. World Drug Index; Version 2/96, Derwent Information, 1996.

  35. MPI: A Message Passing Interface Standard, Message Passing Interface Forum, April 15, 1994, Univ. of Tennessee, Knoxville, TN, USA.

  36. Böhm, H.J. and Klebe, G., Angew. Chem., Int. Ed. Engl., 35 (1996) 2588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klebe, G., Mietzner, T. & Weber, F. Methodological developments and strategies for a fast flexible superposition of drug-size molecules. J Comput Aided Mol Des 13, 35–49 (1999). https://doi.org/10.1023/A:1008026702439

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008026702439

Navigation