Advertisement

Virus Genes

, Volume 17, Issue 2, pp 179–183 | Cite as

A Novel Spliced Transcript of Influenza A/WSN/33 Virus

  • Shin-Ru Shih
  • Piin-Chau Suen
  • Yuan-Shou Chen
  • Shih-Cheng Chang
Article

Abstract

It has been shown that influenza A virus M1 mRNA has two alternative 5′ splice sites: a distal 5′ splice site producing M3 mRNA that has the coding potential for 9 amino acids and a proximal 5′ splice site producing M2 mRNA that encodes the essential M2 ion-channel protein. In this study, we demonstrated that the laboratory widely used strain A/WSN/33, but not A/Udorn/72 possessed another novel 5′ splice site producing a transcript with the coding potential for 54 amino acids. We nominated this novel transcript as M4 mRNA. M4 mRNA was detected in A/WSN/33-infected cells derived from different species. Sequence comparison of M1 mRNA in both A/WSN/33 and Udorn/72 at position 143 to 151 reveals that this novel 5′ splice site generated in WSN was due to one nucleotide difference at position 147. Several strains of influenza A viruses other than WSN also possess the potential M4 5′ splice site by sequence analysis from the files of GenBank.

influenza A virus alternative splicing M4 mRNA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lamb R.A., “The genes and proteins of influenza viruses”, in The Influenza Viruses, pp. 1-87. Edited by R.M. Krug. New York: Plenum Press, 1989.Google Scholar
  2. 2.
    Allen H., McCauley J., Waterfield M., and Gething M.J., Virology 107, 548-551, 1980.PubMedCrossRefGoogle Scholar
  3. 3.
    Lamb R.A. and Lai C.-J., Virology 112, 746-751, 1981.PubMedCrossRefGoogle Scholar
  4. 4.
    Winter G. and Fields S., Nucleic Acids Res 8, 1965-1974, 1980.PubMedGoogle Scholar
  5. 5.
    Shih S.-R., Nemeroff M.E., and Krug R.M., Proc Natl Acad Sci USA 92, 6324-6328, 1995.PubMedCrossRefGoogle Scholar
  6. 6.
    Shih S-R. and Krug R.M., EMBO J 15, 5415-5427, 1996.PubMedGoogle Scholar
  7. 7.
    Lamb R.A., Lai C.-J., and Choppin P.W., Proc Natl Acad Sci USA 78, 4170-4174, 1981.PubMedCrossRefGoogle Scholar
  8. 8.
    Lamb R.A. and Lai C.-J., Virology 123, 237-256, 1982.PubMedCrossRefGoogle Scholar
  9. 9.
    Lamb R.A., Zebedee S.L., and Richardson C.D., Cell 40, 627- 633, 1985.PubMedCrossRefGoogle Scholar
  10. 10.
    Pinto L.H., Holsinger L.J., and Lamb R.A., Cell 69, 517-528, 1992.PubMedCrossRefGoogle Scholar
  11. 11.
    Hughey P.G., Roberts P.C., Holsinger L.J., Zebedee S.L., Lamb R.A., and Compans R.W., Virology 212, 411-421, 1995.PubMedCrossRefGoogle Scholar
  12. 12.
    Sanger F., Nicklen S., and Coulson A.R., Proc Natl Acad Sci USA 74: 5463-5467, 1977.PubMedCrossRefGoogle Scholar
  13. 13.
    Padgett R.A., Grabowski P.J., Konarska M.M., Seiber S., and Sharp P.A., Ann Rev Biochem 55, 1119-1150, 1986.PubMedCrossRefGoogle Scholar
  14. 14.
    Hartley C.A., Reading P.C., Ward A.C., and Anders E.M., Arch Virol 142, 75-88, 1997.PubMedCrossRefGoogle Scholar
  15. 15.
    Dubrovina TIa., Egorov AIu., Ivanova IA., Pokhil'ko AV., and Poliak RIa., Zh Mikrobiol Epidemiol Immunobiol 3, 75-79, 1995.PubMedGoogle Scholar
  16. 16.
    Mo I.P., Brugh M., Fletcher O.J., Rowland G.N., and Swayne D.E., Avian Dis 41, 125-136, 1997.PubMedCrossRefGoogle Scholar
  17. 17.
    Zebedee S.L. and Lamb R.A., J Virol 62, 2762-2772, 1988.PubMedGoogle Scholar
  18. 18.
    Valcarcel J., Fortes P., and Ortin J., J Gen Viro 74, 1317-1362, 1993.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1998

Authors and Affiliations

  • Shin-Ru Shih
    • 1
  • Piin-Chau Suen
    • 2
    • 3
  • Yuan-Shou Chen
    • 1
  • Shih-Cheng Chang
    • 1
  1. 1.School of Medical TechnologyChang Gung UniversityTaiwan, R.O.C
  2. 2.Department of PhysiologyChang Gung UniversityTaiwan, R.O.C
  3. 3.Department of DentistryChang Gung Memorial HospitalLin-KuoTaiwan, R.O.C

Personalised recommendations