Journal of Paleolimnology

, Volume 21, Issue 4, pp 437–448 | Cite as

Sedimentation patterns of diatoms in Lake Holzmaar, Germany - (on the transfer of climate signals to biogenic silica oxygen isotope proxies)

  • Susanne Raubitschek
  • Andreas Lücke
  • Gerhard H. Schleser


The seasonal sedimentation pattern of diatom valves in Lake Holzmaar was investigated during 1995 by deploying sediment traps at three different lake depths. According to the sedimentation pattern, the major reproduction zone of diatoms was restricted to the upper 6 m of the water body. The population growth started late in April and blooms of Cyclotella cf. comensis Grun., which dominates the plankton diatoms, and Fragilaria crotonensis Kitton were collected in traps during June and September, and July, respectively. During summer, the seasonal sedimentation pattern of each taxon, as collected in the upper traps, was reflected in the concentrations in the lowest trap. However, in May and from September onwards, the community composition in the lowest trap and augmented trapping rates suggest both sediment focusing and resuspension of bottom sediments.

The temperature signals as recorded by δ18O values of diatom valves should, therefore, reflect integrated temperatures between 0 and 6 m depth. However, temperatures during summer and autumn are expected to be accentuated in the sedimentary record since the isotopic signal is weighted by both the number and the weight-mass of the valves. During summer, the transfer of these signals by the sedimenting diatoms retains the information pattern recorded, while in spring and autumn/winter additional influxes caused by resuspension may somewhat alter those temperature informations. The proxy signals finally stored in the sediments, may, therefore, not precisely represent the successive temperatures currently recorded during 1995 within mid-lake.

diatoms temperature sediment traps seasonal succession resuspension Lake Holzmaar 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barker, P., J.-C. Fontes, F. Gasse & J.-C. Druart, 1994. Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnol. Oceanogr. 39/1: 99–110.Google Scholar
  2. Battarbee, R. W., 1986. Diatom analysis.-In: Berglund, B.E. (ed) Handbook of Holocene palaeoecology and palaeohydrology. Wiley & Sons, Chichester, 527–570.Google Scholar
  3. Battarbee, R. W. & M. J. Kneen, 1982. The use of electronically counted microspheres in absolute diatom analysis. Limnol. Oceanogr. 27: 184–188.Google Scholar
  4. Bengtsson, L., T. Hellström & L. Rakoczi, 1990. Redestribution of sediments in three Swedish lakes. Hyrobiologia 192: 167–181.Google Scholar
  5. Bloesch, J., 1995. Mechansims, measurement and importance of sediment resuspension in lakes. Mar. Freshwater Res. 46: 295–304.Google Scholar
  6. Bloesch, J. & N. M. Burns, 1980. A critical review of sedimentation trap technique. Schweiz. Z. Hydrol. 42/1: 15–55.Google Scholar
  7. Blomqvist, S. & L. Håkanson, 1981. A review on sediment traps in aquatic environments. Arch. Hydrobiol. 91/1: 101–132.Google Scholar
  8. Bradbury, J. P., 1988. A climatic-limnologic model of diatom sucession for paleolimnological interpretation of varved sediments at Elk Lake, Minnesota. J. Paleolimnol. 1: 115–131.Google Scholar
  9. Brauer, A., 1994. Weichselzeitliche Seesedimente des Holzmaars-Warvenchronologie des Hochglazials und Nachweis von Klimaschwankungen. Documenta naturae 85, München, 210pp.Google Scholar
  10. Burns, N. M. & F. Rosa, 1980. In situ measurement of the settling velocity of organic carbon particles and 10 species of phytoplankton. Limnol. Oceanogr. 25/5: 855–864.Google Scholar
  11. Cameron, N. G., 1995. The representation of diatom communities by fossil assemblages in a small acid lake. J. Paleolimnol. 14: 185–223.Google Scholar
  12. Charlton, M. N. & D. R. S. Lean, 1987. Sedimentation, resuspension, and oxygen depletion in Lake Erie (1979). J. Great Lakes Res. 13 (4): 709–723.Google Scholar
  13. Davis, M. B., R. E. Moeller & J. Ford, 1984. Sediment focusing and pollen influx. In Haworth E. Y. & J. W. G. Lund, (eds) Lake sediments and environmental history. University of Minnesota Press, Minneapolis, 261–293.Google Scholar
  14. Eadie, B. J., R. L. Chambers, W. S. Gardner & G. L. Bell, 1984. Sediment trap studies in Lake Michigan: Resuspension and chemical fluxes in the southern basin. J. Great Lakes Res. 10 (3): 307–321.Google Scholar
  15. Fritz, S. C., S. Juggins, R. Battarbee & D. R. Engstrom, 1991. Reconstruction of past changes in salinity and climate using a diatom-based transfer function. Nature 352: 706–708.Google Scholar
  16. Gálvez, J. A., F. X. Niell & J. Lucena, 1993. Sinking velocities of principal phytoplankton species in a stratified reservoir: Ecological implications. Verh. Internat. Verein. Limnol. 25: 1228–1231.Google Scholar
  17. Håkanson, L., S. Floderus & M. Wallin, 1989. Sediment trap assemblages-a methodological description. Hydrobiol. 176/177: 481–490.Google Scholar
  18. Hargrave, B. T. & N. M. Burns, 1979. Assessment of sediment trap collection efficiency. Limnol. Oceanogr. 24: 1124–1136.Google Scholar
  19. Horn, H. & W. Horn, 1993. Sedimentary losses in the Reservoir Saidenbach: Flux and sinking velocities of dominant phytoplankton Species. Int. Revue ges. Hydrobiol. 78/1: 39–57.Google Scholar
  20. Jahn, R., 1990. Untersuchungen zur benthischen Diatomeenflora und-vegetation der Spree und angrenzender Kanäle im innerstädtischen Gebiet von Berlin (West). PhD Thesis, FUBerlin, 255pp.Google Scholar
  21. Krammer, H. & H. Lange-Bertalot, 1986–1991. Bacillariophyceae. In Ettl, H., G. Gärtner, J. Gerloff, H. Heynig & D. Mollenhauer (eds): Süßwasserflora von Mitteleuropa 2 (1–4). Gustav Fischer, Stuttgart.Google Scholar
  22. Lücke, A., G.-H. Schleser & J. W. F. Negendank (1998). Variations of oxygen isotopes in the hydrologic system of Lake Holzmaar (Eifel, Germany)-implications for the palaeoclimatic interpretation of the sedimentary record. IAEA-SM-349/24.Google Scholar
  23. Lund, J. W. G., 1950. Studies on Asterionella formosa Hass. II. Nutrient depletion and the spring maximum. J. Ecol. 38: 1–35.Google Scholar
  24. Melzer, A., 1992. Submersed macrophytes. In Scharf, B. W. & S. Björk (eds): Limnology of Eifel maar lakes. Adv. Limnol. 38: 223–237.Google Scholar
  25. Paasche, E., 1980. Silicon. In Morris, I., (ed). The physiological ecology of phytoplankton. Studies Ecol. 7: Oxford, 259–284.Google Scholar
  26. Parker, J. I., H. L. Conway & E. M. Yaguchi, 1977. Dissolution of diatom frustules and recycling of amorphous silicon in Lake Michigan. J. Fish. Res. Board Can 34: 545–551.Google Scholar
  27. Patrick, R., 1977. Ecology of freshwater diatoms-diatom communities. In Werner D. (ed): The biology of diatoms. Blackwell Scientific Publications, Oxford, 284–332.Google Scholar
  28. Pienitz, R., J. P. Smol, & H. J. Birks, 1995. Assessment of freshwater diatoms as quantitative indicators of past climatic change in the Yukon and Nothwest Territories, Canada. J. Paleolimnol. 13: 21–49.Google Scholar
  29. Reynolds, C. S., 1984. The ecology of freshwater phytoplankton. Cambridge University Press. Cambridge, 369pp.Google Scholar
  30. Rippey, B., 1983. A laboratory study of the silicon release processes from a lake sediment (Lough Ness, Northern Ireland). Arch. Hydrobiol. 96/4: 417–433.Google Scholar
  31. Rosa, F., J. Bloesch & D. E. Rathke, 1991. Sampling the settling and suspended particulate matter (SPM). In Mudroch, A. & S. D. MacKnight (eds): Handbook of Techniques for Aquatic Sediments Sampling, Florida, 97–130.Google Scholar
  32. Scharf, B., & U. Menn, 1992. Hydrology and morphometry. In Scharf, B. W. & S. Björk (eds): Limnology of Eifel maar lakes. Adv. Limnol. 38: 43–62.Google Scholar
  33. Sommer, U., 1984. Sedimentation of principal phytoplankton species in Lake Constance. J. Plankt. Res. 6/1: 1–14.Google Scholar
  34. Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. In Sandgren, C. D. (ed) Growth and reproductive strategies of freshwater phytoplankton. Cambridge.Google Scholar
  35. Sommer, U. & H. H. Stabel, 1983. Silicon consumption and population density changes of dominant planktonic diatoms in Lake Constance. J. Ecol. 71: 119–130.Google Scholar
  36. Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG-model of seasonal succession of planktonic events in fresh Waters.-Arch. Hydrobiol. 106/4: 433–471.Google Scholar
  37. Tessenow, U., 1972. Lösungs-, Diffusions-und Sorptionsprozesse in der Oberschicht von Seesedimenten. Arch. Hydrobiol. Suppl. 38: 353–398.Google Scholar
  38. Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: The role of limiting nutrients. Ann. Rev. Ecol. System. 13: 349–372.Google Scholar
  39. Vyverman, W. & K. Sabbe, 1995. Diatom-temperature transfer functions based on the altitudinal zonation of diatom assemblages in Papua New Guinea: A possible tool in the reconstruction of regional palaeoclimatic changes. J. Paleolimnol. 13: 65–77.Google Scholar
  40. Weckström, J., A. Korhola & T. Blom, 1997. The relationship between diatoms and water temperature in thirty subarctic fennoscandian lakes. Arc. Alp. Res. 29/1: 75–92.Google Scholar
  41. Willén, E., 1991. Planktonic diatoms-an ecological review. Algological Studies 62: 69–106.Google Scholar
  42. Zolitschka, B., 1991. Absolute dating of late-Quaternary lacustrine sediments by high resolution varve chronology. Hydrobiol. 214: 59–61Google Scholar
  43. Zolitschka, B., 1996. Paläoklimatische Bedeutung laminierter Sedimente. Habilitationsschrift. Mathemat.-naturwissenschaftl. Fakultät der Universität Potsdam, Germany, 196pp.Google Scholar

Copyright information

© Kluwer Academic Publishers 1999

Authors and Affiliations

  • Susanne Raubitschek
    • 1
  • Andreas Lücke
    • 1
  • Gerhard H. Schleser
    • 1
  1. 1.Institut für Erdöl und Org. Geochemie (ICG-4)Forschungszentrum JülichJülichGermany

Personalised recommendations