Skip to main content
Log in

Expression Analysis of Recombinant Herpes Simplex Virus Type 1 DNase

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

Expression of recombinant herpes simplex virus type 1 (HSV-1) deoxyribonuclease (DNase) was analyzed in BHK-21 cells, a standard cell line for virus propagation, by using mammalian cell expression systems based on vaccinia virus and on Semliki Forest virus (SFV)1. Although the establishing of recombinant vaccinia virus failed due to the apparent toxicity of the herpesviral enzyme, soluble and functional HSV-1 DNase was efficiently expressed in BHK-21 cells by the vaccinia virus/T7 RNA polymerase hybrid system as well as by recombinant Semliki Forest virus. Using rabbit antiserum ExoC, directed against the C-terminal residues 503–626, or mouse monoclonal antibody (MAb) Q1, raised against the type 2 enzyme, a major 85-kDa protein with the identical size of the enzyme from HSV-1-infected cells was identified to be induced in both expression systems. With recombinant SFV functional HSV-1 DNase coincided with the overproduction of a single major 85-kDa protein re aching an optimum between 16 h and 36 h after infection. At later times of infection the enzymatic activity vanished. Thus, recombinant SFV may be an appropriate expression vector for biochemical studies of the enzyme when (i) packaged recombinant virus particles are used for infection and (ii) infection does not exceed 24 h. Due to the limitations of transient expression systems, the vaccinia/T7 RNA polymerase hybrid system is suited for expression analysis on a small scale, and for studying intracellular interactions of the enzyme as demonstrated by immunofluorescence microscopy studies. Using vector pTM1, recombinant HSV-1 DNase was efficiently overproduced in BHK-21 cells at 6 h after transfection and was shown to colocalize with the cellular chromatin at sites apparently distinct from the bulk of the herpesviral replication sites the way it is observed for the enzyme of lytically infected cells. The deleting of the 123 C-terminal amino acid residues did not alter this nuclear loca lization of HSV-1 DNase, suggesting that the latter sequences and other herpesviral factors are not required for the chromatin association.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Draper K.G., Devi-Rao G., Costa R.H., Blair E.D., Thompson R.L., and Wagner E.K., J Virol 57, 1023-1036, 1986.

    PubMed  CAS  Google Scholar 

  2. Costa R.H., Draper K.G., Banks L., Powell K.L., Cohen G., Eisenberg R., and Wagner E.K., J Virol 48, 591-603, 1983.

    PubMed  CAS  Google Scholar 

  3. McGeoch D.J., Dolan A., and Frame M.C., Nucl Acids Res 14, 3435-3448, 1986.

    PubMed  CAS  Google Scholar 

  4. Martinez R., Shao L., Bronstein J.C., Weber P.C., and Weller S.K., Virology 215, 152-164, 1996.

    Article  PubMed  CAS  Google Scholar 

  5. Banks L., Purifoy D.J.M., Hurst P.-F., Killington R.A., and Powell K.L., J Gen Virol 64, 2249-2260, 1983.

    PubMed  CAS  Google Scholar 

  6. Banks L.M., Halliburton I.W., Purifoy D.J.M., Killington R.A., and Powell K.L., J Gen Virol 66, 1-14, 1985.

    PubMed  CAS  Google Scholar 

  7. Keir H.M. and Gold E., Biochim Biophys Acta 72, 263-276, 1963.

    Article  CAS  Google Scholar 

  8. Hoffmann P.J. and Cheng Y.-C., J Biol Chem 253, 3557-3562, 1978.

    PubMed  CAS  Google Scholar 

  9. Hoffmann P.J. and Cheng Y.-C., J Virol 32, 449-457, 1979.

    PubMed  CAS  Google Scholar 

  10. Hoffmann P.J., J. Virol 38, 1005-1014, 1981.

    PubMed  CAS  Google Scholar 

  11. Knopf C.W. and Weisshart K., Eur J Biochem 191, 263-273, 1990.

    Article  PubMed  CAS  Google Scholar 

  12. Kehm E., Göksu M.-A., Bayer S., and Knopf C.W., Intervirology, submitted, 1998.

  13. Fraser M.J., Hatahet Z., and Huang X., J Biol Chem 264, 13093-13101, 1989.

    PubMed  CAS  Google Scholar 

  14. Fraser M.J., Bioessays 16, 761-766, 1994.

    Article  PubMed  CAS  Google Scholar 

  15. Weller S.K., Seghatoleslami M.R., Shao L., Rowse D., and Carmicheal E.P., J Gen Virol 71, 2941-2952, 1990.

    Article  PubMed  CAS  Google Scholar 

  16. Shao L., Rapp L.M., and Weller S.K., Virology 196, 146-162, 1993.

    Article  PubMed  CAS  Google Scholar 

  17. Martinez R., Sarisky R.T., Weber P.C., and Weller S.K., J Virol 70, 2975-2085, 1996.

    Google Scholar 

  18. Strick R., Hansen J., Bracht R., Komitowski D., and Knopf C.W., Intervirology 40, 41-49, 1997.

    PubMed  CAS  Google Scholar 

  19. Fuerst T.R., Niles E.G., Studier F.W., and Moss B., Proc Natl Acad Sci USA 83, 8122-8126, 1986.

    Article  PubMed  CAS  Google Scholar 

  20. Falkner F.G. and Moss B., J Virol 62, 1849-1854, 1988.

    PubMed  CAS  Google Scholar 

  21. Moss B., Elroy-Stein O., Mizukami T., Alexander W.A., and Fuerst T.R., Nature 348, 91-92, 1990.

    Article  PubMed  CAS  Google Scholar 

  22. Strebel K., Beck E., Strohmaier K., and Schaller H., J Virol 57, 983-991, 1986.

    PubMed  CAS  Google Scholar 

  23. Laemmli U.K., Nature 227, 680-685, 1970.

    Article  PubMed  CAS  Google Scholar 

  24. Weisshart K. and Knopf C.W., Eur J Biochem 174, 707-716, 1988.

    Article  PubMed  CAS  Google Scholar 

  25. Kühn F.J.P. and Knopf C.W., J Biol Chem 271, 29245-29254, 1996.

    Article  PubMed  Google Scholar 

  26. Elroy-Stein O. and Moss B., in: “Current Protocols in Molecular Biology”, Eds Ausubel F.M., Brent R., Kingston R.E., Moore D.D., Seidman J.G., Smith J.A., and Struhl K., John Wiley & Sons, Inc., vol. 2, 16.19.1-16.19.9, 1992.

  27. Liljeström P. and Garoff H., Bio/Technology 9, 1356-1361, 1991.

    Article  PubMed  Google Scholar 

  28. Garnier J., Osguthorpe D.J., and Robson B., J Mol Biol 120, 97-120, 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Bronstein J.C. and Weber P.C., J Virol 70, 2008-2013, 1996.

    PubMed  CAS  Google Scholar 

  30. Strobel-Fidler M. and Francke B., Virology 103, 493-501, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Elroy-Stein O., Fuerst T.R., and Moss B., Proc Natl Acad Sci USA 86, 6126-6130, 1989.

    Article  PubMed  CAS  Google Scholar 

  32. Randall R.E. and Dinwoodie N., J Gen Virol 67, 2163-2177, 1986.

    PubMed  CAS  Google Scholar 

  33. Puvion-Dutilleul F. and Pichard E., Biology of the Cell 58, 15-22, 1986.

    PubMed  CAS  Google Scholar 

  34. McGeoch D.J., Dalrymple M.A., Davison A.J., Dolan A., Frame M.C., McNab D., Perry L.J., Scott J.E., and Taylor P., J Virol 69, 1531-1574, 1988.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Knopf.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kehm, E., Go¨ksu, MA. & Knopf, C. Expression Analysis of Recombinant Herpes Simplex Virus Type 1 DNase. Virus Genes 17, 129–138 (1998). https://doi.org/10.1023/A:1008012606497

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008012606497

Navigation