Skip to main content

Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum

Abstract

The ability of Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum to scavenge peroxyl radicals was investigated by kinetic studies in a model system. The thermal initiated oxidation of methyl linoleate was performed at 60°C in heptanol, with or without antioxidants. When they reached 1% of the substrate, seaweed extracts exhibited antioxidant activities by extending the induction period, but they did not suppress the rate of oxygen uptake as did vitamin E.

A synergistic effect occurred when both algal extracts (1.5 g L-1) and vitamin E (0.4 mmol L-1) were present, and the effectiveness of the combined antioxidants during the whole induction period was vitamin E effectiveness. The synergistic effect of L. digitata, however, was subject to seasonal variations: samples collected in summer were effective synergists, whereas samples collected in winter displayed a marked negative synergism.

The phospholipid fractions of F. vesiculosus, F. serratus and A. nodosum, including pigments, accounted for only 6% of the total lipid fraction, and did not exhibit a large synergistic effect. The main phospholipid was not phosphatidyl ethanolamine as usually related, but phosphatidyl inositol. Fucoxanthin had some antioxidant activity per se under our experimental conditions, but did not act as a synergist of vitamin E. The most potent synergists were recognized as chlorophyll a and related compounds by the application of liquid-liquid partition and chromatography for the identification of active components.

This is a preview of subscription content, access via your institution.

References

  1. Berge JP, Gouygou JP, Dubacq JP, Durand P (1995) Reassessment of lipidcomposition of the diatom skeletonema costatum. Phytochemistry 39: 1017–1021.

    CAS  Article  Google Scholar 

  2. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917.

    PubMed  CAS  Google Scholar 

  3. Bondarev SL (1997) Photophysics of β-carotene and related compounds. J. appl. Spectrosc. 64: 1–5.

    CAS  Google Scholar 

  4. Burger K (1984) Dunnsicht chromatographic mid gradienten Elution imVergleich zur HPLC. Fresenius Z. anal. Chem. 318: 228–233.

    CAS  Article  Google Scholar 

  5. Burlakova EB, Mazaletskaya LI, Sheludchenko NI, Shishkina LN (1995) Inhibitory effect of the mixtures of phenol antioxidants and phosphatidylcholine. Russian Chem. Bull. 44: 1014–1020.

    Article  Google Scholar 

  6. Burton GW, Ingold KU (1981) Autoxidation of biological molecules. 1. The antioxidant activity of vitamin E and related chain-breaking phenolic antioxidants in vitro. J. Am. chem. Soc. 103: 6472–6477.

    CAS  Article  Google Scholar 

  7. Burton GW, Ingold KU (1984) β-carotene: an unusual type of lipid antioxidant. Science 224: 569–573.

    PubMed  CAS  Google Scholar 

  8. Cahyana AH, Shuto Y, Kinoshita Y (1992) Pyropheophytin a as an antioxidativesubstance from the marine alga arame (Eisenia bicyclis). Biosci. Biotech. Biochem. 56: 1533–1535.

    CAS  Article  Google Scholar 

  9. Cahyana AH, Shuto Y, Kinoshita Y (1993a) Antioxidative activity of porphyrinderivatives. Biosci. Biotech. Biochem. 57: 680–681.

    CAS  Google Scholar 

  10. Cahyana AH, Shuto Y, Kinoshita Y (1993b) Synergistic antioxidative effects of porphyrin derivatives with α-tocopherol and ascorbic acid. Biosci. Biotech. Biochem. 57: 1753–1754.

    CAS  Google Scholar 

  11. El Oualja H, Perrin D, Martin R (1995) Influence of β-carotene on the induced oxidation of ethyl linoleate. New J. Chem. 19: 1187–1198.

    CAS  Google Scholar 

  12. Endo Y, Usuki R, Kaneda T (1985a) Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. I. Comparison of the inhibitory effects. J. Am. Oil Chem. Soc. 62: 1375–1378.

    CAS  Google Scholar 

  13. Endo Y, Usuki R, Kaneda T (1985b) Antioxidant effects of chlorophyll and pheophytin on the autoxidation of oils in the dark. II. The mechanism of antioxidative action of chlorophyll. J. Am. Oil Chem. Soc. 62: 1387–1390.

    CAS  Google Scholar 

  14. Fleurence J, Gubtier G, Mabeau S, Leray C (1994) Fatty acids from 11 marine macroalgae of the french brittany coast. J. applied Phycol. 6: 527–532.

    CAS  Article  Google Scholar 

  15. Fujimoto K, Kaneda T (1980) Screening test for antioxygenic compounds from marine algae and fractionation from Eisenia bicyclis and Undaria pinnatifida. Bull. Japan. Soc. Sci. Fish. 46: 1125–1130.

    CAS  Google Scholar 

  16. Fujimoto K, Kaneda T (1984) Separation of antioxygenic (antioxidant) compounds from marine algae. Hydrobiologia 116: 111–113.

    Article  Google Scholar 

  17. Fujimoto K, Ohmura H, Kaneda T (1985) Screening for antioxygenic compoundsin marine algae and bromophenols as effective principles in a red alga Polysiphonia ulceolate. Bull. Japan. Soc. Sci. Fish. 51: 1139–1143.

    CAS  Google Scholar 

  18. Haugan JA, Liaasen-Jensen S (1989) Improved isolation procedure for fucoxanthin. Phytochemistry 28: 2797–2798.

    CAS  Article  Google Scholar 

  19. Herbreteau F, Coiffard LJM, Derrien A, De Roeck-Holtzhauer Y (1997) The fatty acid composition of five species of macroalgae. Bot. mar. 40: 25–27.

    CAS  Google Scholar 

  20. Hudson BJF, Ghavani M (1984) Phospholipids as antioxidant synergists for tocopherols in the autoxidation of edible oils. Lebensm Wiss. u-Technol. 17: 191–194.

    CAS  Google Scholar 

  21. Ito K, Hori K (1989) Seaweed: chemical composition and potential food uses. Food Reviews International 5: 101–144.

    CAS  Article  Google Scholar 

  22. Jones AL, Harwood JL (1992) Lipid composition of the brown algae Fucusvesiculosus and Ascophyllum nodosum. Phytochemistry 31: 3397–3403.

    CAS  Article  Google Scholar 

  23. Kaneda T, Ando H (1971) Component lipids of purple laver and their antioxygenic activity. Proc. int. Seaweed Symp. 7: 553–557.

    Google Scholar 

  24. Kikuchi M, Kawakami Y, Nishikawa N, Hirano A (1995). Antioxidants containing fucoxanthin and prevention of oxidation by fucoxanthin. Jpn. Kokai Tokkyo Koho JP 07 224 278 [95 224 278], 5 pages. From Chem. Abs. 123: 283776b.

    Google Scholar 

  25. Koga T, Terao J (1995) Phospholipids increase radical-scavenging activity of vitamin E in a bulk oil model system. J. Agric. Food Chem. 43: 1450–1454.

    CAS  Article  Google Scholar 

  26. Koskas JP, Cillard J, Cillard P (1984) Autoxidation of linoleic acid and behavior of its hydroperoxides with and without tocopherols. J. am. Oil Chem. Soc. 61: 1466–1469.

    CAS  Google Scholar 

  27. Lepage M (1964) Isolation and characterization of an esterified form of steryl glucoside. J. Lipid Res. 5: 587–592.

    PubMed  Google Scholar 

  28. Le Tutour B (1990) Antioxidative activities of algal extracts, synergistic effectwith vitamin E. Phytochemistry 29: 3759–3765.

    CAS  Article  Google Scholar 

  29. Le Tutour B, Brunel C, Quemeneur F (1996) Effet de synergie de la chlorophylle a sur les propriétés antioxydantes de la vitamine E. New J. Chem. 20: 707–721.

    CAS  Google Scholar 

  30. Mangold HK (1964) Thin layer chromatography of lipids. J. Am. Oil Chem. Soc. 47, 762–773.

    Google Scholar 

  31. Matsukawa R, Dubinsky Z, Kishimoto E, Masaki K, Masuda Y, Takeuchi T, Chihara M, Yamamoto Y, Niki E, Karube I (1997) A comparison of screening methods for antioxidant activity in seaweeds. J. appl. Phycol. 9: 29–35.

    CAS  Article  Google Scholar 

  32. Metcalfe LD, Schmitz AA (1961) The rapid preparation of fatty acid esters for gaz chromatographic analysis. Analyt. Chem. 33: 363–364.

    CAS  Article  Google Scholar 

  33. Nakamura T, Nagayama K, Uchida K, Tanaka R (1996) Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish. Sci. 62: 923–926.

    CAS  Google Scholar 

  34. Nishibori S, Namiki K (1985) Antioxidative activity of seaweed lipids and their utilisation in food. Kaseigaku Zasshi 36: 845–850 (in Japanese).

    CAS  Google Scholar 

  35. Nishibori S, Namiki K (1988) Antioxidative substances in the green fractions of the lipids of aonori (Enteromorpha sp.). Kaseigaku Zasshi 39: 1173–1178 (in Japanese).

    CAS  Google Scholar 

  36. Rousseau-Richard C, Richard C, Martin R (1988) Etude cinétique de l'influencecomplexe, pro-ou anti-oxydante, de dérivés phénoliques sur l'oxydation induite d'un substrat polyinsaturé. II. Oxydation du linolénate de méthyle pur ou en presence de phénol, 3-t-butyl-4-hydroxyanisole, t-butylhydroquinone, 3,5-di-t-butyl-4-hydroxytoluene ou α-tocophérol. J. Chim. Phys. 85: 175–184.

    CAS  Google Scholar 

  37. Terao J (1989) Antioxidant activity of β-carotene-related carotenoids in solution. Lipids 24: 659–661.

    PubMed  CAS  Google Scholar 

  38. Tsuchihashi H, Kigoshi M, Iwatsuki M, Niki E (1995) Action of β-carotene as anantioxidant against lipid peroxidation. Arch. Biochem. Biophys. 323: 137–147.

    PubMed  CAS  Article  Google Scholar 

  39. Yamamoto Y, Niki E, Kamiya Y (1982) Oxidation of lipids. I. Quantitative determination of the oxidation of methyl linoleate and methyl linolenate. Bull. Chem. Soc. Jpn. 55: 1548–1550.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Le Tutour, B., Benslimane, F., Gouleau, M.P. et al. Antioxidant and pro-oxidant activities of the brown algae, Laminaria digitata, Himanthalia elongata, Fucus vesiculosus, Fucus serratus and Ascophyllum nodosum. Journal of Applied Phycology 10, 121 (1998). https://doi.org/10.1023/A:1008007313731

Download citation

  • algae
  • antioxidant
  • synergy
  • vitamin E
  • tocopherol
  • fucoxanthin
  • phospholipids